Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Vision & Mission of Institute

Vision: To be a Leader in preparing professionally competent engineers

Mission: We, at Annasaheb Dange College of Engineering and Technology, Ashta, are committed to achieve our vision by

Imparting effective outcome based education.

- Preparing students through skill oriented courses to excel in their profession with ethical values.
- Promoting research to benefit the society.
- Strengthening relationship with all stakeholders.

Vision & Mission of Department

Vision: To be a leader in developing electrical engineering graduate with knowledge, skill & ethics.

Mission: We, at department of electrical Engineering, are committed to achieve our vision by,

- Facilitating learning through outcomes based education
- Cultivating Skills & attitude among graduates to excel in their career
- Motivating research approach of graduates to solve real-time problems for benefit of the society
- Strengthening relationship with all stakeholders for continues improvement

ASHTA 415 301 4

Head of Department

Head

Electrical Engineering Department

ADCET, Ashta

Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Program Educational Objectives (PEOs) The graduates of the Department of Aeronautical Engineering at ADCET, Ashta will be able to, PEO 1: Domain Knowledge:- Solve related problems using Electrical Engineering principles, tools and practices. PEO 2: Core Competency:- Become a practicing Engineer in diversified fields of Electrical Engineering. PEO 3: lifelong learning:-Engage in lifelong learning for effective adaptation to technological challenges. PEO 4: Professionalism:-Demonstrate leadership skills at workplace and function professionally in competitive environment.

Head
Electrical Engineering Department
ADCET, Ashta

Head of Department

Annasaheb Dange College of Engineering and Technology Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University,

Kolhapur)

Department of Electrical Engineering

	Program Outcomes (POs)
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and stainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to ones own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Program Specific Outcomes (PSOs)

DSO 1	Ability to apply electrical engineering knowledge, skills for testing, control & maintenance of electrical
F30 1	Ability to apply electrical engineering knowledge, skills for testing, control & maintenance of electrical systems such as Machines, Power Systems, Drives & Automation

PSO 2 Ability to identify problems in the diversified areas of Electrical Engineering and determine the hardware or software solutions to support the Societal, Environmental & Industrial needs.

Head of Department

Head
Electrical Engineering Department
ADCET, Ashta

Curriculum

S. Y. B. Tech. Semester -III

HOD Electrical

Dean Academics

Director

Curriculum

S. Y. B. Tech. Semester -IV

HOD Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

B. Tech. Semester- III

4							Ev	aluatio	n Scher	ne	
Course Code	Course	Г	'eacl	hing	Scheme	Scheme	Theory (Marks)			Practical (Marks)	
			T	P	Credits	Scheme	Max	1407-1505-110-00	a. for Max		Min. for Passing
	1000					ISE - I	10				
1EED 0201	A II - d North III	3				MSE	30		40		,
1EEBS201	Applied Mathematics – III	3	1	180	4	ISE – II	10		40		
						ESE	50	20			
	* 2 2	-				ISE – I	10				
1EEPC202	FI 4: 10: 24 4 1 1					MSE	30		40		
TEEPC202	Electrical Circuit Analysis	3		-	3	ISE - II	10		40		
						ESE	50	20			
E						ISE – I	10				
1EEEC202	Analog Electronics	3	(4)	-	3	MSE	30		40		
1EEPC203						ISE – II	10				
						ESE	50	20			
	Electrical Measurements & Instrumentation					ISE - I	10				
1EEPC204		3	· .			MSE	30		40		
TEEPC204		3			3	ISE – II	10		40		
						ESE	50	20			
		3			2	ISE – I	10			102	
1EEES205	Electrical Engineering Materials					MSE	30		40		
TEEE5205		3	-	240	3	ISE – II	10		40		
						ESE	50	20			
1EEHS206	Industrial Psychology	1		-	1	ISE			-	25	10
1EEPC251	Electrical Circuit Analysis Laboratory	-		2	1	ISE	-	-	-	25	10
1EEPC252	Analog Electronics			2		ISE		-	_	25	10
TEEPC232	Laboratory	-	-5	2	1	ESE		POE		50	20
10000000	Electrical Measurements &			277		ISE			-	25	10
1EEPC253	Instrumentation Laboratory	-	-	2	1	ESE		POE	537.000	50	20
ŒEES254	Programming in C++ Laboratory	1	-	2	2	ISE	-	-	-	50	20
1EEMC207	Environmental Studies	2	-	4	-	ISE		Grade		()	
	Total	19	1	8	22		500		- 1	250	

Course Category	HS	BS	ES	PC	PE	OE	PR
Credits	01	04	05	12		122	45
Cumulative Sum	04	20	26	12			

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

B. Tech. Semester- IV

5					Evaluation Scheme						
Course Code	Course	Teaching Scheme				Calcana	Theory (Marks)			Practical (Marks)	
		L	T	P	Credits	Scheme	Max	and the second second	n. for ssing	Max	Min. for Passing
						ISE - I	10		7	-	
1 EEDC 200	Signala & Systems	3	1		4	MSE	30		40	1/2-	
1EEPC208	Signals & Systems	3	1	-	4	ISE - II	10		40	-	
						ESE	50	20			-
						ISE - I	10				
1EEPC209	Fundamentals of Power	3				MSE	30		40		
	System	3	-	1-	3	ISE - II	10		40		
					1	ESE	50	20			
	DC Machines &Transformers					ISE - I	10		40		
1EEPC210					4	MSE	30				
		4	-	-		ISE - II	10			11	100
		-				ESE	50	20			
	Digital Electronics & Microprocessor	1		-		ISE - I	10	40	1		
10000011						MSE	30		40		
1EEPC211		4			4	ISE - II	10		40		
		1.0				ESE	50	20			
	- je		- 6			ISE - I	10				
	Electromagnetic	3				MSE	30		40		
1EEPC212	Engineering		-		3	ISE - II	10			*	
Aug .	0					ESE	50	20	7-2	-	
1EDDC065	DC Machines		-	_		ISE			57	25	10
1EEPC255	&Transformers Laboratory	-	-	2	1	ESE		POE		50	20
1EEDCOCC	Digital Electronics and			_	1	ISE				25	10
1EEPC256	Microprocessor Laboratory	-	-	2	1	ESE		POE	t.	50	20
1EEES257	MATLAB for Electrical Engineering	-	-	2	1	ISE	-			50	20
1EEHS258	English Proficiency	-	-	2	1	ISE			NO.	50	20
	Total	17	1	8	22		500			250	

Course Category	HS	BS	ES	PC	PE	OE	PR
Credits	01		01	20			
Cumulative Sum	05	20	27	32	-		

HOD-Electrical

Dean Academics

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEBS201, Applied Mathematics- III
Prerequisite/s	1EEBS101,1EEBS106
Teaching Scheme: Lecture/Tutorial/Practical	03/01/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcom	nes (COs): After successful completion of this course, the students will be able to:
1EEBS201_1	Demonstrate basic knowledge of Laplace transform, Fourier series and Z transforms. (K2)
1EEBS201_2	Solve the problems on Fourier Series, Laplace Transform and Z Transform.(K ³)
1EEBS201_3	Make use of Linear Differential Equation with constant coefficients to solve the Electrical Engineering problem. (K ³)
1EEBS201_4	Solve the problems of vector calculus. (K ³)
1EEBS201_5	Demonstrate numerical ability to solve the problem. (S ²)

Course (Contents:	
Unit 1	Higher order linear differential equations and its Application Linear Differential Equations, Definition, Complete solution, Operator D, Rules for finding the Complementary function, Inverse operator, Rules for finding the Particular integral, Working procedure to solve the equation, Applications of Linear Differential Equations to Oscillatory Electrical Circuit.	07 Hr
Unit 2	Laplace Transform Introduction, Definition; Conditions for existence, Transforms of elementary functions, Properties of Laplace Transform - Linearity property, shifting property, Change of scale property, Laplace Transforms of Periodic functions, Multiplication by t ⁿ , Division by t, Laplace transform of derivatives, Laplace transform of integrals, Unit step function, Unit impulse function.	07 Hr
Unit 3	Inverse Laplace Transform Inverse Laplace transform - Definition, Standard forms, Methods of finding inverse transforms by Shifting property, Partial fraction, Convolution theorem, Inverse transforms of derivative and integral, Application of Laplace transform to solve Linear Differential Equations.	07 Hr
Unit 4	Fourier series Introduction, Euler's Formulae, Conditions for a Fourier expansion, Functions having points of discontinuity, Change of interval, Expansion of odd or even periodic functions, Half range series.	07 Hr
Unit 5	Z-Transforms Introduction, Definition, Properties, Z-transforms of basic sequences, Z transforms of some standard discrete functions, Evaluation of inverse Z transforms, Application to difference Equations.	07 Hr
Unit 6	Vector Calculus Vector Calculus Vector point functions - vector operator del, Del applied to scalar point functions - gradient, Directional derivative, Del applied to vector point functions - Divergence and curl, Line integral, Green's theorem in the plane.	07 Hr

List of Tutorial:

Title of Tutorial	Contact Hrs
Higher order linear differential equations	01
Application of higher order linear differential equations	01
Laplace Transform	01
Inverse Laplace Transform	01
Fourier Series	01
	Higher order linear differential equations Application of higher order linear differential equations Laplace Transform Inverse Laplace Transform

HOD Electrical

Dean Academics

Director

Executive Director 37-81e-01134

6.	Fourier Series – Half range series	01
7.	Z Transform	01
8.	Vector Calculus	01

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Higher Engineering Mathematics	Dr. B. S. Grewal	Khanna Publication, New Delhi	Fourth	2007
02	A Text Book of Engineering Mathematics	N. P. Bali, Manish Goyal	Laxmi Publication, New Delhi	Seventh	2007
03	Higher Engineering Mathematics.	B.V. Ramana	Tata McGraw Hill Education Private Limited, Delhi	First	2007
04	Higher Engineering Mathematics.	H. K. Das	S. Chand and Company ltd., New Delhi.	First	2011

Referen	Reference Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1.	Engineering Mathematics Vol- II.	Kandasamy P., Thilagavathy K. and Gunavathy K.	S. Chand & Company Ltd, New Delhi	Fourth	1999
2.	Engineering Mathematics Vol- I.	Kandasamy P., Thilagavathy K. and Gunavathy K.	S Chand & Company Ltd , New Delhi	Third	2000
3.	Advanced Engineering Mathematics	Potter Merle C.	Oxford University Press	Third	2005
4.	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons, Inc.	Ninth	2007
5.	Advanced Engineering Mathematics.	O Neil Peter V	Cengage Learing India Pvt. Ltd., Delhi	First	2012
6.	Engineering Mathematics Volume I and II	ITL Education	Cengage Learing India Pvt. Ltd., Delhi	First	2015

HOD Electrical

Dean Academics

Director

Executive Director

ST- FIE - no. 134

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEPC202, Electrical Circuit Analysis
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/ Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

	e Objectives: urse aims to
01	Explain the basic concepts and laws of DC and AC electrical networks and solve them using mesh and nodal analysis techniques.
02	Study the fundamental concepts in graph theory.
03	Explain concepts of driving point and transfer functions.
04	Understand circuit analysis in time and frequency domain.
05	Study open circuit, short circuit, transmission, hybrid parameters and their interrelationship.
	y -p

Course Outcon	nes (COs): I completion of this course, the student will be able to:
1EEPC202 1	Use concepts of electric network topology, nodes, branches, loops to solve circuit problems (K^3)
1EEPC202_1	Apply network theorems to analyze various circuits and networks. (K ³)
1EEPC202_3	Calculate initial conditions for current and voltage in first order and second order circuits. (K³)
1EEPC202_4	Derive resonance in ac circuits, and analyze various ac circuits and networks (K ³)
1EEPC202_5	Calculate and correlate two port network parameters. (K ³)
1EEPC202_6	Apply the transform analysis to linear circuits and systems. (K ³)

Course	Contents:	
Unit 1	Analysis of D. C. Circuits:- Introduction, types of sources, network graph, KCL, KVL, nodal analysis, nodal analysis with voltage sources, mesh analysis, mesh analysis with current sources, star-delta transformation, source transformation.	10 Hrs.
Unit 2	Circuit Theorems (Applicable to D. C. Circuits):- Introduction, superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer.	08 Hrs.
Unit 3	Analysis of First Order Circuits and Second Order Circuits: First Order Circuits:- Introduction, source free R-C Circuit, source free R-L circuit, singularity functions, step response of R-C Circuit, step response of R-L circuit Second Order Circuits:- Introduction, finding initial and final values, source free series RLC circuit, source free parallel RLC circuit, step response of series R-L-C circuit, step response of parallel R-L-C Circuit	10 Hrs.
Unit 4	Sinusoidal Steady State Analysis:- Introduction, nodal analysis, mesh analysis, superposition theorem, source transformation, Thevenin and Norton equivalent circuits, maximum average power transfer, resonance, series resonance, parallel resonance, three phase circuits, power and power factor in ac circuits.	12 Hrs.
Unit 5	Two Port Networks:- Introduction, impedance parameters, admittance parameters, hybrid parameters, transmission parameters, relationships between parameters, interconnection of networks.	08 Hrs.
Unit 6	Transform Analysis:- Laplace Transform:- Introduction, definition of Laplace transform, properties of Laplace transform, The inverse Laplace transform, application to integrodifferential equations, circuit element models, circuit analysis, driving point function, transfer functions.	08 Hrs.

HOD Electrical

Dean Academics

Director

Executive Director

51-40-03134

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Fundamentals of Electric Circuits	Charles K Alexander, Mathew N O Sadiku	Tata McGraw-Hill	Third	2008
02	Network Analysis and Synthesis	C.L Wadhwa	New Age International Publishers	Second	2006
03	Circuit Theory (Analysis and Synthesis)	A. Chakrabarti	Dhanpat Rai & Co.	Second	2010
04	"Circuits & Network Analysis & Synthesis"	A. Sudhakaar & Shyanmugam S.Palli	McGraw-Hill Co.	Third	2007

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Network Analysis and Synthesis	Franklin F Kuo	Jhon Wiley and Sons	Second	2009
02	Network Analysis	M.E. Van Valkenburg	Prentice Hall of India	Third	1974
03	Networks and Systems	D.Roy Choudhary	New Age International Publishers	First Reprint	2005
04	Basic circuit theory	L.P.Huelsman	Prentice-Hall	First illustated	2006

HOD Electrical

Dean Academics

Director

Executive Director

SU-618.-06/26

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEPC203, Analog Electronics
Prerequisite/s	1EEES108
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE-I / MSE /ISE-II / ESE	10/30/10/50

	e Objectives: ourse aims to:
01	Understand various semiconductor devices
02	Describe BJT and JFET operation
03	Classify feedback amplifiers & analyze various oscillators
04	List ideal op amp characteristics and explain configuration
05	Explain op-amp applications
06	Describe applications of IC 555 timer and PLL

Course Outcom Upon successful	es (COs): completion of this course, the student will be able to:	
1EEPC203 1	Explain various semiconductor devises and its applications. (K2)	
1EEPC203_2	List op-amp characteristics and distinguish its configurations (K2)	
1EEPC203_3	Classify feedback amplifiers & analyze various oscillators (K3)	
1EEPC203_4	Compare BJT and JFET. (K3)	
1EEPC203_5	Explain various applications of operational Amplifier. (K3)	
1EEPC203_6	Interpret applications of IC 555 timers and PLL 566.(K3)	

course	Contents: Diode Applications –	
Unit 1	Review of Diode, Half wave rectifier, centre tap rectifier and full wave rectifier, Performance parameters of rectifier, Filter circuits, clipper, clamper, voltage doublers, Optocoupler. [Numerical on rectifier circuit and clipper, clamper]	06 Hrs
Unit 2	Transistors: Bipolor Junction Transistor (BJT) - Construction and characteristics of BJTs, Transistor biasing- common base, common emitter and common collector configuration, Load line and operating point of BJT, Bias stability- DC biasing circuits, Numericals Expected Junction Field Effect Transistors (JFET): Construction, operation and Characteristics of JFETs	08 Hrs
Unit 3	Feedback Amplifiers and Oscillator Circuits Feedback Amplifiers: Feedback concepts, Barkhausen criterion, classification, Voltage/current series / shunt feedback amplifiers Oscillator Circuits: Operation and analysis of RC phase shift, Wien bridge, Hartely, colpitts and crystal oscillators.	06 Hrs
Unit 4	Fundamentals of Operational Amplifier Op-amp basics, IC741 pin configuration, Open loop & Feedback Modes- Inverting and Non Inverting amplifier, Ideal op-amp characteristics-Non ideal characteristics- DC characteristics – Input bias current-Input offset voltage- Input offset current- Thermal drift-AC characteristics- Frequency response- Frequency compensation- Slew rate. [Numerical]	08 Hrs
Unit 5	Op Amp Applications Comparator, zero crossing detector, Instrumentation amplifier, Summing amplifier, Difference amplifier, Voltage follower, Differentiator, Integrator, V to I converter, I to V converter, peak detector, precision rectifier, Schmitt Trigger.	08 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

Qu- Cle -05/34

Unit 6	Timer and Phase Locked Loops Timer Introduction of Timer and its needs, IC 555 Timer: functional diagram, Mono-stable multivibrator, A-stable multivibrator	
Cmrs	Phase Locked Loops Introduction of PLL and its needs,IC 566 PLL: Functional block diagram, Voltage Controlled Oscillator, frequency detection and synthesis	06 Hrs

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	PHI/Pearson Education	Eleventh	2015
02	Op-amps & Linear Integrated Circuits	Ramakant A. Gayakwad	PHIPublication New Delhi	Fourth	2015
03	Electronic Devices & Circuits	P. Ramesh Babu	Scitech Pub	Third	December 2009
04	Electronic Devices & Circuits	Milliman, Halkias and Satyabratajit.	McGraw Hill Education India	Third	2012

Refe	rence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Principle of Electronics	V.K.Mehata, RohitMehata	S. Chand	Tenth	2006
02	Electronic Principles	Albert Malvino and David J Bates,	Tata McGraw Hill,	Seventh	2014
03	Electronic Devices and circuits	Allen Mottershead	PHI publication	First	1979
04	Operational amplifiers and linear ICs	David A Bell	Oxford University Press	Third	2011

HOD Electrical

Dean Academics

Director

Executive Director

SH- 518-A6136

Class	S.Y. B. Tech, Semester-III
Course Code and Course Title	1EEPC204, Electrical Measurements and Instrumentation
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

	urse Objectives : e course aims to:	
1	Introduce the students with the field of Electrical Measurements and Instrumentation.	
2	Provide knowledge of solving unknown electrical parameters on various techniques.	
3	Describe concepts in Analog and Digital measuring instruments.	
4	Explain the concepts of different Transducers.	
5	Introduce recent developments in Measurements and instrumentation	

Course Outcom Upon successful	completion of this course, the student will be able to:
1EEPC204_1	Illustrate various concepts of measuring instruments (Analog/Digital), their classification, construction, working and range extension technique. (K ²)
1EEPC204_2	Derive the equations of different methods for measurement of resistance, inductance and capacitance. (K ²)
1EEPC204_3	Explain construction and operation of different transducers.(K ²)
1EEPC204 4	Describe various analyzers, its types & modern techniques in measurement. (K2)
1EEPC204_5	Apply conceptual understanding to solve the numericals in Electrical Measurement and Instrumentation. (K ³)

Course (Contents:	
Unit 1	Principles of Analog Measuring Instruments: Essentials of indicating instruments: deflecting, controlling and damping systems. Construction, working principle, advantages and disadvantages of Moving Iron (MI) (attraction and repulsion), Permanent Magnet Moving Coil (PMMC) & Dynamometer type instruments. Extension of ranges by using shunts, Multipliers (numerical expected), Instrument Transformers.	08 Hrs
Unit 2	Measurement of Resistance, Inductance & Capacitance: Measurement of low, medium and high resistance. Wheatstone bridge, Kelvin's double bridge, ammeter-voltmeter method, Megger, Earth tester for earth resistance measurement. Maxwell's Inductance bridge, Maxwell's Inductance & Capacitance Bridge, Hay's bridge, Anderson's bridge, Owen's bridge, De sauty's Bridge, Schering Bridge.(numerical expected on bridges)	08 Hrs
Unit 3	Measurement of Power and Energy: Active & reactive power measurement in three phase system for balanced and unbalanced load using three wattmeter method, two wattmeter method & one wattmeter method(numerical expected). Construction, working principle, torque equation, errors and adjustments of single phase conventional (induction type) energy meter, Calibration of energy meter (numerical expected).	08 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

GY-616-07134

Unit 4	Principles of Digital Measuring Instruments: Advantages of digital meters over analogue meters. Resolution & sensitivity of digital meters. Working principles of digital Voltmeter, Ammeter, Energy Meter, Multimeter, Construction and working principle of CRO, measurement of voltage, current, period and frequency by CRO. Phase angle & frequency by Lissajous pattern & numerical. Construction and working principle of DSO, advantages and disadvantages of DSO over CRO.	07Hrs
Unit 5	Transducers: Transducers: Introduction, classification of transducers. Electrical transducer, Resistive transducer, Resistive position transducer, inductive transducer, Pressure inductive transducer, Pressure capacitive transducer, Piezoelectric Transducers, strain gauge, LVDT and RVDT – construction, working, application.	07Hrs
Unit 6	Recent developments in Measurements and instrumentation: Wave Analyzers, Power Analyzer, Maximum demand indicator, tri-vector meter, Smart Sensors, Virtual Instrumentation.	04 Hrs

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	A Course in Electrical and Electronic Measurements & Instrumentation	A. K. Sawhney	Dhanpat Rai& Co.	Nineteenth	2014
02	A Course in Electronics & Electrical Measurements & Instrumentation	J. B. Gupta,	S. K. Kataria & Sons.	Eighth	2012
03	Electronic Instrumentation	H.S.Kalsi	Tata McGraw Hill	Third	2012
04	Electrical Measurement & Instrumentation	U. A. Bakshi V. A. Bakshi	Technical Publication	Third	2015

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Electrical Measurements & Measuring Instruments	E. W. Golding F. C. Widdies	Reem Publications.	Third	2011
02	Introduction to Measurements and Instrumentation	Arun K. Ghosh	PHI Publication	Fourth	2012
03	Electrical Measurement & Instrumentation	RS Sirohi Radhakrisnan	New Age International	Third	2010
04	Instrumentation Measurement and Analysis	B., K. C. Nakra K Chaudhari,	Tata McGraw Hill.	Second	2009

HOD Electrical

Dean Academics

Director

Executive Director

CN-10-12 134

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEPC205, Electrical Engineering Materials
Prerequisite/s	1EEBS102, 1EEBS107
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE-I / MSE / ISE-II / ESE	10/30/10/50

	e Objectives ourse aims to:
01	Become familiar with Electrical Engineering Material
02	Know the different properties of Conducting, Insulating, Magnetic and Dielectric Materials in the Electrical Engineering
03	Know the various application of the Material in the Electrical Engineering
04	Determine the polarization mechanism use for the Dielectric in the Capacitor
05	Know the construction, working and application of the new methods use for the Direct energy conversion systems
06	Select the particular battery use for various applications

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEPC205.1	Understand the different properties of Conducting, Insulating, Magnetic and Dielectric Materials in the Electrical Engineering(K2)
1EEPC205.2	Identify the different Conducting, Insulating, Magnetic and Dielectric Materials for Application (K2)
1EEPC205.3	Explain the phenomenon of the polarization mechanism which use for the Dielectric in the Capacitor(K3)
1EEPC205.4	Evaluate Conducting, Magnetic and Dielectric Materials use in the Electrical Engineering (K3)
1EEPC205.5	Explain the Various materials use for construction, working and application of the Direct energy conversion systems (K3)
1EEPC205.6	Select the rating of battery use for various applications(K4)

Course C	Contents:	
Unit 1	Conducting Materials: Introduction of Classification of material into conducting, semi conducting and insulating materials -Resistance and factors affecting it such as alloying and temperature - Classification of conducting material as low resistivity and high resistivity materials, their practical applications, conductors, cable, solder and sheathing materials, electrical properties of these materials, Photo-conductivity, Superconductivity.	09 Hrs.
Unit 2	Magnetic Materials: Magnetization; Atomic Magnetic Moments; Classification of Magnetic Materials; Diamagnetic, Paramagnetic and Ferromagnetic Materials; Ferromagnetic Domains, Magnetization Curve, Soft and Hard Ferromagnetic Materials; Losses in Magnetic Materials, Magnetic materials for electrical devices.	07 Hrs.
Unit 3	Insulating Materials: Properties of the insulating materials, Liquid insulating materials, Solid insulating materials, Gases insulating materials, Thermal classification of insulating material, insulating materials for electrical devices. Latest trends in Insulating Materials	06 Hrs.
Unit 4	Dielectric Materials: Introduction, Classification of dielectric materials, polarization mechanism, dielectric losses, frequency and temperature effect, dielectric breakdown, Ferro electricity and Piezoelectricity	05 Hrs.

HOD Electrical

Dean Academics

Director

Executive Director

SY- 81e - 09 134

Unit 5	Materials required for Renewable Sources Solar cells (Different materials used for plastic, organic and thin-film solar cells), MHD generations, Fuel cells, Thermo electric generator, Thermo ionic converters.	07Hrs.
Unit 6	Batteries: Introduction to Batteries, Elements of Electro Chemical Cell, Battery classification, Battery Parameters, Factors affecting battery performance, Zero Emission Battery Research Activity (ZEBRA) Batteries, Different Factors for selection of Battery for Electric Vehicles, Batteries used in Electric Vehicle (EV) and Electric Hybrid Vehicle (EHV)	08 Hrs.

Sr. No	Title	Author	Publisher	Edition	Year
01	A Course in Electrical Engineering Materials	S. P. Seth	Dhanpat Rai and Sons publication	Third	2010
02	Electrical Engineering Materials	R.K.Shula, Archana Singh	Tata McGraw Hill publication	First	2012
03	Electrical Engineering Materials	K. B. Raina & S. K. Bhattacharya	S. K. Kataria & Sons.	Third	2010
04	Understanding Batteries	Ronald M. Dell and David A.J. Rand	Royal Society of Chemistry	First	2001

Refer	Reference Books:					
Sr. No	Title	Author	Publisher	Edition	Year	
01	Electrical Engineering Materials	C. S. Indulkar & S. Thiruvengadam	S. Chand & Com. Ltd	Fourth	2012	
02	A course in Electrical Engineering Materials	R.K.Rajput	University Science Press	First	2009	
02	Non-Conventional Energy Sources	S.Hasan Saeed D.K.Sharma	S. K. Kataria & Sons.	Third	2012	
03	Handbook of Batteries	Linden and Reddy	New York McGraw Hill	First	2002	

HOD Electrical

Dean Academics

Director

Executive Director

SV-018-10134

Class	B. Tech. SemIII
Course Code and Course Title	1EEHS206, Industrial Psychology
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial/Practical	01/00/00
Credits	01
Evaluation Scheme: ISE	25

	Objectives urse aims to:
01	Understand theoretical underpinnings of industrial psychology.
02	Identify theoretical foundation of leadership.
03	Understand the motivation and job satisfaction.
04	Understand the group behavior and its different models.
05	Realize different aspects of well-being and its impact on work.

Course Outcome Upon successful	es (COs): completion of this course, the student will be able to:		
1EEHS206_1 Explain theoretical underpinnings of industrial psychology.			
1EEHS206_2	Explain theoretical foundation of leadership.		
1EEHS206_3	Demonstrate the importance of motivation ad involvement in determining satisfaction at work		
1EEHS206_4	Explain and understand group behavior.		
1EEHS206_5	Demonstrate aspects of well-being and forms of dysfunctional behavior.		

Course (Contents:	
Unit 1	Introduction and History of Industrial Psychology, the science and practice of industrial psychology, World War I, Great depression years and World War II, Industrial Psychology Today and in the future	01 Hrs.
Unit 2	Leadership, importance of leadership, theories of leadership	03Hrs.
Unit 3	Motivation and Satisfaction, theories of motivation and its application, influential factors on job satisfaction, relationship between job satisfaction, motivation and performance	04 Hrs
Unit 4	Group Behavior, importance of groups, models of group behavior	03 Hrs.
Unit 5	Well Being and dysfunctional behavior at work, positive and negative aspects of well- being, causes of work-related well-being, Interventions, forms of dysfunctional behavior	03 Hrs.

Reference Books:					
Sr. No	Title	Author/s	Publisher	Edition	Year
01	Emotional Intelligence	Daniel Goleman	Time magazine	Sixth	2016
02	Organizational and work Psychology	Ian Rothmann And Cary Cooper	Hodder Education	First	2008
03	Introduction to Industrial/ organizational psychology	Ronald E. Riggio	Pearson	Third	2013

HOD Electrical

Dean Academics

Director

Executive Director

54-cle-11/34

Class	S. Y. B. Tech. Semester-III	
Course Code and Course Title	1EEPC251, Electrical Circuit Analysis Laboratory	
Prerequisite/s	1EEES153	
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02	
Credits	01	
Evaluation Scheme: ISE / ESE	50/00	

	e Objectives urse aims to:
01	Read circuit schematics and construct linear circuits using resistors, capacitors, inductors.
02	Measure resistance, DC and AC voltages, current, and power, and experimentally verify the results for a variety of electrical circuits.
03	Understand DC analysis, Transient analysis of a given electrical circuit.
04	Test circuits, analyze data and compare measured performance to theory and simulation.
05	Study open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

Course Outcom Upon successful	es (COs): completion of this course, the student will be able to:
1EEPC252_1	Apply the knowledge of network solution techniques and theorems to solve a variety of electrical circuits.(K ³)
1EEPC252_2	Experiment network solution techniques and theorems on linear DC and AC electrical circuits. (S ²)
1EEPC252_3	Use modern tools/software (like PSPICE) to Simulate DC analysis, AC analysis and Transient analysis for a variety of electrical circuits.(S ²)
1EEPC252_4	Communicate effectively about laboratory work both orally and in writing. (S ²)
1EEPC252_5	Work effectively in groups by sharing responsibilities and collaborating on findings. (A ²)

List of Experiments:

Sr. No	Title of Experiments
1.	Study of ladder network.
2.	Verification of nodal and mesh analysis.
3.	Verification of star delta transformation.
4.	Verification of superposition theorem.
5.	Verification of Norton's and Thevenin's Theorem
6.	Verification of maximum power transfer theorem.
7.	Simulation of DC circuits using PSPICE
8.	Study of network theorems to DC and AC circuits and verification using PSPICE.
9.	Study of step response of R-C, R-L and R-L-C series circuit and verification using PSPICE.
10.	Simulation of AC circuits using PSPICE.
11.	Study of series and parallel resonance.
12.	Calculations of Z, Y, ABCD and hybrid parameters of two port network.

HOD Electrical

Dean Academics

Director

Executive Director

SY-ELE-12134

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEPC252, Analog Electronics Laboratory
Prerequisite/s	1EEES156
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	50/50

	se Objectives ourse aims to:
1	Understand the fundamental principles, characteristics of semiconductor p-n junction diode, transistors-BJT, JFET, and linear integrated circuits- OP-AMP741.
2	Identify various semiconductor devices, characteristics, useful for various industrial applications.
3	Analyze small signal circuits using various semiconductor devices by applying fundamentals of mathematics, Basic Electrical knowledge and Network theory.
4	Develop the skills of simulation, analysis and design of small signal circuits.
5	Communicate effectively, think critically and creatively.

Course Outcon		
Upon successful	completion of this course, the student will be able to:	
1EEPC252_1	Select suitable semiconductor device for particular application. (K ³)	
1EEPC252_2	Plot various characteristic of semiconductor devices.(K ³)	
1EEPC252_3	Simulate various electronic circuits using MATLAB.(S ²)	
1EEPC252 4	Demonstrate operation of semiconductor devices. (S ²)	
1EEPC252 5	Work in groups for performing practices in Analog electronics laboratory. (A2)	

List of Experiments:

Sr. No.	Title of Experiment
1.	Plot V-I characteristics of pn junction diode (1N4007).
2.	Design and test half wave, Rectifier circuits with & without LC filter and determines the Ripple factor & Efficiency.
3.	Find performance parameters of the full wave, centre tap and bridge type rectifier circuits with & without LC filter.
4.	Study of the clipper circuit using Diodes.
5.	Draw the waveform and determine the output response of the clamper circuit.
6.	Study the input and output characteristics of a transistor in Common Emitter configuration.
7.	Study of Operational Amplifier as Inverting amplifier
8.	Study of Operational Amplifier as Non-Inverting amplifier
9.	Analysis of operational amplifier as adder and Substractor.
10.	Analysis of operational amplifier as zero crossing detector.
11.	Analysis of operational amplifier as V-I converter or I to V converter.
12.	Simulation of clipper & clamper circuits using MATLAB simulink.

HOD Electrical

Dean Academics

Director

Executive Director

SY- 61e- 13134

Class	S.Y.B. Tech. Semester-III
Course Code and Course Title	1EEPC253, Electrical Measurements and Instrumentation Laboratory
Prerequisite/s	1EEES153
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	50/50

Co	urse Objectives :
The	e course aims to:
1.	Introduce the students with the field of Electrical Measurements and Instrumentation Laboratory.
2.	Demonstrate electrical measuring instruments.
3.	Introduce skills in handling Analog and Digital measuring instruments.
4.	Select proper electrical measuring instrument for particular application.
5.	Introduce Recent developments in Measurements and instrumentation.

Course Outcome	s (COs)
Upon completion	of this course, students will be able to
1EEPC253_1	Demonstrate mechanism of various measuring instruments. (K ³)
1EEPC253_2	Conduct different measuring methods to measure various electrical parameters. (K ³)
1EEPC253_3	Select proper instrument for measurement of electrical parameters. (S ²)
1EEPC253_4	Respond Effectively in the form of oral and writing journal.(S ²)
1EEPC253 5	Examine the observations and determine the result of experiment. (A ²)

List of experiments:

Expt. No.	Title of Experiment
1	Demonstration of various analog measuring instruments
2	Measurement of active power in three phase circuit by using two wattmeter method
3	Measurement of reactive power in three phase circuit by using one wattmeter method
4	Calibration of single phase induction type energy meter.
5	Measurement of resistance by ammeter voltmeter method.
6	Measurement of resistance using Wheatstone's/Kelvin's double bridge.
	Measurement of Inductance using appropriate bridge
7	Measurement of capacitance using appropriate bridge
8	Measurement of voltage, current, time period and frequency using CRO & frequency measurement by Lissajous pattern.
9	Displacement measurement using Linear Variable Differential Transducer.
10	Measurement of weight using Strain Guage.
11	Study of Power Analyser.

HOD Electrical

Dean Academics

Director

Executive Director

SY-EIE-14134

Class	S.Y.B. Tech. Semester-III
Course Code and Course Title	1EEES254, Programming in C++
Prerequisite/s	1BSES112
Teaching Scheme: Lecture/Tutorial/Practical	01/00/02
Credits	02
Evaluation Scheme: ISE / ESE	50/00

Course Outcon Upon successfu	nes (COs): completion of this course, the student will be able to:
1EEES254_1	Design an algorithm for given problem by applying logical ability to provide solution. (K4)
1EEES254_2	Use C++ programming development environment, compiling, debugging, linking for executing a program (S ²)
1EEES254_3	Build the programming by using in built functions, customized functions, loops and structure. (S3)
1EEES254_4	Create and execute C++ programs to solve given engineering problems (S3)
1EEES254_5	Communicate effectively both orally and in writing(S ³)
1EEES254_6	Practice professional and ethical behavior during performance in the laboratory. (A ²)

Course (Contents	
Unit 1	Introduction to Object Oriented Programming: Characteristics of Object oriented programming, structure of C++, Functions in C++, , Memory Allocation functions	3 Hr
Unit 2	Functions Returning values from functions. Reference arguments. Overloaded function. Inline function. Default arguments. Returning by reference.	2Hr
Unit 3	Pointers Addresses and pointers. The address of operator and pointer and arrays. Pointer and Faction pointer and C-types string. Memory management: New and Delete, pointers to objects,	2Hr
Unit 4	Array and string Arrays (Initialization, Declaration, One dimensional and Two dimensional arrays), String (String operations, String Arrays), Simple programs, sorting, searching, matrix operations	2 Hr
Unit 5	Classes & Objects Introduction, declaration of class, defining member function, making an outside function inline, Nesting member function, private member function, creating the objects	2 Hr
Unit 6	Overloading and Templates Overloading unary operations. Overloading binary operators, data conversion, conversion keywords. Function templates.	3 Hr

Sr. No.	Title of Experiment
1	Introduction to software engineering and basic concepts used in C++.
2	Program on sample code,
3	Program on one and multidimensional array
4	Program on conditional statements and loops.
5	Programs on category of functions
6	Programs on functions, value/reference/address parameters.
7	Programs by using class and object
8	Programs on Static data members in C++/ Static member functions in C++
9	Program on Overloading and Template.
10	Program using Virtual functions, pure virtual functions, container classes.
11	Program on struct, class and data hiding.
12	Program using constructors, dynamic allocation of data members, new and delete.

HOD Electrical

Dean Academics

Director

Executive Director

St- c1e-15/34

Text Books:

Sr. No.	Title of Book	Author	Publisher	Edition	Year
1	Object Oriented Programming with C++	E Balagurusamy	Tata MCGraw-Hill	Fourth	2010
2	Let Us C++	Yashwant Kanetkar	BPB	Second	2008
3	The C Programming language	Kernighan B.W and Ritchie D.M.	Pearson Education	Second	2006
4	The C Programming Language	Brian W. Kernighan Dennis M. Ritchie	Prentice Hall, Englewood Cliffs, New Jersey	Second	2006
5	C++: How to Program	H. M. Deitel and P. J. Deitel	Prentice Hall,	Fifth	2012
6	Data Abstraction and Problem Solving with C++	Carrano& Prichard,	Addison Wesley,	Fourth	2016

Reference Books:

Sr. No.	Title of Book	Author	Publisher
1	Programming with C++	Byron S Gottfried	TMH
2	How to Solve it by Computer	R.G. Dromey	Pearson Education
3	C++ programming Laboratory	Nadini S. Sidnal	Wiley

HOD Electrical

Dean Academics

Director

Executive Director

SY- CIE-15/2/6.

Class	S. Y. B. Tech. Semester-III
Course Code and Course Title	1EEMC207, Environmental Studies
Prerequisite/s	
Teaching Scheme: Lecture	02
Credits	
Evaluation Scheme: ISE	50 (Grade)

Course Outcome	
Upon successful of	completion of the course students will be able to:
1EEMC207_1	Explain importance of environmental studies with necessary of acts.(K ²)
1EEMC207_2	Explain importance of public awareness on environmental problems (K ²)
1EEMC207_3	Write a technical report in team regarding course and impacts of environment related issues.(S2
1EEMC207 4	Discuss current concern of environment issues.(A ²)
1EEMC207_5	Describe the need of environment protection and ethics.(A ²)

MARKET OF BOOK SALES	Definition, scope and importance. Multidisciplinary nature of environmental studies,	Lawrence -
Unit 1	Need for public awareness.	2 Hrs
Unit 2	a) Forest resources: Use and over-exploitation, deforestation, dams and their effects on forests and tribal people; b) Water resources: Use and over-utilization of surface and groundwater, floods, drought, conflicts over water, dams-benefits and problems. c) Mineral resources: Usage and exploitation. Environmental effects of extracting and using mineral resources. d) Food resources: World food problem, changes caused by agriculture effect of modern agriculture, fertilizer-pesticide problems. e) Energy resources: Growing energy needs, renewable and non renewable energy resources, use of alternate energy sources. Solar energy, Biomass energy, Nuclear energy, f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources.	4 Hrs
Unit 3	Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristics features, structure and function of the following ecosystem: - a) Forest ecosystem, b) Grassland ecosystem, c) Desert ecosystem d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)	4 Hrs
Unit 4	Introduction- Definition: genetic, species and ecosystem diversity. Bio-geographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. India as a mega- diversity nation. Western Ghat as a biodiversity region. Hot-spots of biodiversity. Threats to biodiversity habitat loss, poaching of wildlife, man- wild life conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.	5 Hrs
Unit 5	Definition: Causes, effects and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.	4 Hrs
Unit 6	Disaster management: floods, earthquake, cyclone, tsunami and landslides Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issue and possible solutions. Global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products.	3 Hrs
Unit 7	From Unsustainable to Sustainable development Environmental Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Population Growth and Human Health, Human Rights	6 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

SY-81e-17134

	Mini project based on :	
	Environmental assets River/Forest/Grassland/Hill/Mountain.	
	OR	
	A local polluted site Urban/Rural/Industrial/Agricultural.	
Mini Project	OR	
	Study of common plants, insects, and birds.	
	OR	
	Study of simple ecosystems - ponds, river, hill slopes, etc.	
	(Mini Project report is Mandatory.)	

HOD Electrical

Dean Academics

Director

Executive Director

57-ELE-18134

Class	S. Y. B. Tech. Semester- IV
Course Code and Course Title	1EEPC208, Signals and Systems
Prerequisite/s	1EEBS201, 1EEPC202
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE/ ISE II/ ESE	10/30/10/50

	e Objectives (COs): urse aims to:
1	Understand various mathematical operations on signals.
2	Describe the signals and systems in different domains as time, frequency, s- domain, z-domain.
3	Study the analysis of continuous time & discrete time signals in time and frequency domain
4	Study the analysis of linear time-invariant systems using Laplace Transform & Z- Transform
5	Compute response of a linear time-invariant system for the given input.

Course Outcor Upon successfu	nes (COs): I completion of this course, the student will be able to:
1EEPC208_1	Classify different types of signals & systems. (K ²)
1EEPC208_2	Develop total response of linear time invariant systems by differential equations. (K ³)
1EEPC208_3	Construct the signals using various operations (K ³)
1EEPC208_4	Solve the response of linear systems in time domain. (K ³)
1EEPC208_5	Utilize Fourier Transform technique for continuous & discrete signals. (K³)

Course	Contents:	-
Unit 1	Introduction to signals & systems: Classification of signals, standard test signals, Basic operation on signals, Classification of systems, Representing CT signals by samples, Sampling DT signals, and Correlation, Energy and power spectral density of signals.	10 Hr
Unit 2	Time domain analysis of discrete and continuous time signals: Zero state response, Zero input response, Impulse response, Step response, Convolution sum and convolution integral, Graphical representation of convolution, Direct form I & Direct form II, FIR and IIR systems	08Hr
Unit 3	System Analysis using Laplace transform: Introduction, ROC, S-plane, properties of Laplace and inverse Laplace transform, transfer function analysis, solution of LTI differential equation, Poles And Zeros, Analysis of electrical networks.	08Hr
Unit 4	System analysis using Z-transform: A brief introduction to Z-transform, its properties & inverse – Z transform ROC, connection between Laplace transform and Z-transform, transfer function analysis, solution of LTI difference equation, and stability in Z-domain.	10Hr
Unit 5	Fourier analysis of continuous signals: Periodic representation by trigonometric Fourier series, Fourier spectrum, Dirichlet's condition, Exponential Fourier Series, Exponential Fourier Spectra, Fourier transform and its properties, Sampling theorem, Nyquist criterion, Relation between Fourier and	10Hr

HOD Electrical

Dean Academics

Director

Executive Director

ST-Ele-19/34

	Laplace Transform, Fourier spectrum	
Unit 6	Fourier analysis of discrete signal: Introduction, properties of D.T. F. T., Relation between DTFT & Z-transform, Frequency response of first and second order system, T.F., DFT, Zero padding, FFT, IDFT using FFT algorithm, Ideal & Non-ideal Filters, Fourier Spectrum Analysis of Voltage & Current waveforms.	10 Hr

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Linear systems and signals	B. P. Lathi	Oxford University Press	Second	2005
2	Signals and systems	Simon Haykin,	Wiley Publications	Second	2007
3	Signals and systems	M. J. Roberts	Tata McGraw Hill publications	Second	2012
4	Signals and systems	Allan V Oppenheim	PHI Learning pvt. ltd- New Delhi	Second	1997

Reference Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Signals and systems	C. T. Chen	Oxford Publications,	Third	2004
2	Analog Signal Processing: Analysis & Synthesis	AlokBarua,	Wiley Publications	First	2014
3	Signals & Linear Systems	Gabel	Wiley Publications	Third	1986
4	Signals and Systems	Krishnaveni	Wiley Publications	First	2012

HOD Electrical

Dean Academics

Director

Executive Director

SY-81e-20/34

Class	S. Y. B. Tech. Semester- IV
Course Code and Course Title	1EEPC209, Fundamentals of Power System
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

	e Objectives urse aims to:
01	Introduce electrical power system and its components.
02	Introduce economics aspects of electricity generation.
03	Understand the Electrical distribution systems.
04	Introduce physical components& structures of the overhead transmission lines and underground cables.
05	Solve numerical to determine the electrical parameters of the transmission lines.
06	Know importance of power factor of the system & its improvement methods.

Course Outcom Upon successful	es (COs) completion of this course, the student will be able to:
1EEPC209_1	Describe the Electrical power generation methods & major power system components. (K ²)
1EEPC209 2	Explain the terms involved in generation cost & different tariff systems. (K ²)
1EEPC209_3	Discuss the power factor improvement methods in electrical power systems.(K ²)
1EEPC209 4	Calculate the voltage drop of distributor for given parameters (K3)
1EEPC209_5	Apply knowledge of overhead & underground transmission system elements to calculate the parameters in mechanical construction of lines. (K ³)
1EEPC209_6	Analyze the different electrical parameters of overhead transmission lines. (K3)

	Generation of Electrical Power	
Unit 1	AC power system Single line diagram, India's electricity scenario, Thermal power plant, Hydro power plant, Nuclear power plant, Diesel power plant, Wind power plant, solar power plant, Tidal power plant schematic diagram, Selection of site, Advantages & Disadvantages. Power System Elements: Brief description of power system elements such as Synchronous Machine, Transformer, Bus bar, Circuit Breaker, Isolator, CT, PT.	7 Hrs
Unit 2	Economics of Generation: Load curve, Load duration curve, Maximum demand, Average Load, Load factor, Demand factor, Diversity factor, Plant capacity factor, Plant use factor (Numerical) Economics of generation, Cost of the generation, Fixed cost, Semi fixed cost and running cost, Methods of determining depreciation. Tariff, Desirable characteristics of tariff, Tariff methods – two part tariff, Three part tariff & Power factor tariff methods.	6 Hrs
Unit 3	Distribution system Distribution system introduction, Feeder & Distributor, Classification of distribution systems, Connection schemes of distribution schemes, Voltage drop calculation (Derivation & Numerical) to AC distribution systems of radial and ring system, Substation, Indoor & Outdoor substation, Substation layout.	7 Hrs
Unit 4	Mechanical Design of Transmission system Main elements of transmission lines, Types of Conductors (ACSR, Expanded ACSR, ACAR, Bundle conductor), Line supports, Types of line supports, Insulators, Types of insulators, Potential distribution over suspension insulators, String efficiency, Methods to improve string efficiency, Sag, Calculation of sag (Numerical), Corona, Factors affecting the corona, Advantages and disadvantages of corona, Methods to reduce the corona. Underground cable, Construction & Classification of single – phase and three – phase cables, method of laying underground cables, Grading of underground cables	8 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

SY- 81e -21/34

Unit 5	Electrical Design of transmission system: Resistances, Calculation of resistance, Inductance, Flux linkage of the single conductor, Inductance of single phase two – wire line, Three phase line and Double circuit line, Skin effect, Proximity effect, Capacitance, Capacitance of two – wire line, Three phase line with equilateral space, Capacitance of line with unequal spacing, Numerical	8 Hrs
Unit 6	Power factor improvement & Trends in power system: Power factor, Disadvantages of low power factor, Causes of low power factor, Methods of improving power factor – static capacitor, Synchronous condensers, Calculations of power factor, Most economical power factor for KW and KVAR loads, Numerical problems, Trends in power system- Alternate sources of power generation, Introduction to wireless power transmission system, Super capacitor.	6 Hrs

Text l	Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Principles of Power system	V K Mehta &Rohit Mehta	S. Chand company PVT LTD	Fourth	2007
02	Electrical power systems	AshfaqHussain	CBS publications	Fifth	2007
03	Electrical Power Generation, Transmission & Distribution	S N Singh	PHI learning PVT LTD	Second	2003
04	Modern Power system Analysis	D P Kothari &I J Nagrath	Tata McGraw – Hill	Third	2009
05	Generation of Electrical Energy	B. R. Gupta	S. Chand Publication	Fifth	2007

Refer	rence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Electrical Power System	Weedy B M, Cory B J	John Wiley Publication	Fifth	2013
02	Electrical Power Generation, Transmission & Distribution	Leonard L. Grigsby	CRC Press	Third	2012
03	Electrical Power systems	C L Wadhwa	New age International (P) Limited	Sixth	1997
04	Transmission & Distribution electrical engineering	Dr. C R Bayliss& B J Hardy	Newnes	Third	2007

HOD Electrical

Dean Academics

Director

Executive Director

54-818-22/34

Class	S. Y. B. Tech. Semester- IV
Course Code and Course Title	1EEPC210, DC Machines and Transformers
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II/ ESE	10/30/10/50

	rse Objectives:
1	Learn the different parts of DC machines, Transformer and its principle of operation.
2	Understand the circuit parameters and its effect on the performance characteristics of DC machines& Transformer.
3	Study the different types of starters and speed control methods
4	Find the numerical solution for the performance of the machines based on its parameters.
5	Understand the different type of test conducted on DC machines& Transformer

Course Outcome	s (COs): completion of this course, the student will be able to:
1EEPC209 1	Explain the constructional details and working principle of DC machines& Transformer (K ²)
1EEPC209_2	Describe the effects of system parameters on performance of DC machines& Transformer. (K ²)
1EEPC209_3	Solve numerical to determine the performance parameters of DC machines& Transformer.(K ³)
1EEPC209_4	Select the suitable starter & speed control method for specific application.(K ³)
1EEPC209_5	Analyze the performance of a DC machines& Transformer by using appropriate testing methods.(K4)

Lourse C	Contents:	
Unit 1	DC Generator Construction details, Working Principle, Armature winding and its factors EMF equation, Power Stages in DC Generator. Types and Characteristics of DC generators, armature reaction and its effects, commutation &methods to improve commutation, Applications of DC generator	08 Hr
Unit 2	D.C. Motors Working principle of DC motor, Back EMF & its significance, Power stages in DC motor, Voltage equation, power equation, Speed Equation, Torque Equation, shaft torque, Break horse power, Types, characteristics & applications of DC Motors, Need & types of starter, Speed control methods, reversing direction of rotation and Braking Methods, Special Purpose motors: PMDC, BLDC, Stepper Motors, Servo Motors	12 Hr
Unit 3	Performance of DC machines Losses and Efficiency, OCC of DC Generator, IS standards for testing, Brake test on DC motor, Swinburne's test on DC motor, Regenerative or Hopkinson's test on DC motor	08 Hı
Unit 4	Single phase Transformer Construction details, working principle, types, Concept of ideal transformer, EMF equation, Exact and approximate equivalent circuit referred to either side, General Phasor diagrams on no load and load. Voltage Regulation, , transformer rating, Special Purpose Transformers: Autotransformers, Welding Transformer, Isolation Transformer, Grounding transformer.	12 H
Unit 5	Three – Phase Transformers Poly-phase Transformers-connecting a bank of three identical single phase transformer for three phase transformation, Standard connections for three phase transformers, their voltage Phasor diagrams, Phasor groups, Parallel operation of transformers, conditions to be satisfied, load sharing under various conditions, Open delta or V-V connection, application and vector diagram, Scott connection for three phases to two phase transformation and vice-versa, applications.	08Hr

HOD Electrical

Dean Academics

Director E

Executive Director

54-418-23/34

Unit 6	Performance of Transformer Losses& Efficiency, maximum efficiency, all day efficiency, IS standards for testing, Polarity Test, Load Test, OC and SC test, Sumpner's Test, Separation of Eddy current & hysteresis losses.	08Hr
--------	---	------

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Principles of Electric Machine	V. K. Mehta	Tata Mcgraw Hill	Second	2009
2	Electric Machinery	BimbhraP.S	Khanna Publisher	Seventh	2011
3	Alternating Current Machines	M. G. Say	Wiley	Fifth	1983
4	Electric Machinery	A.E Fitzgerald Stephen Kingsly	Tata Mcgraw Hill	Fourth	1983

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Electric Machines	Ashfaq Husain	Dhanpatrai	Third	2016
2	Generalized Machine Theory,	Bimbhra P.S	Khanna Publisher	Fourth	1987
3	Electric Machines	M.V. Deshpande	PHI	First	2011
4	Electric Machines	Samarjit Ghosh	Pearson	Second	2012

HOD Electrical

Dean Academics

Director

Executive Director

SY- 4e - 24/34

Class	S. Y. B. Tech. Semester-IV
Course Code and Course Title	1EEPC211, Digital Electronics & Microprocessor
Prerequisite/s	1EEES108
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I/ MSE/ ISE II/ ESE	10/30/10/50

	rse Objectives: course aims to:
1	Understand number representation and conversion between different representation in digital electronic circuits
2	Transform Boolean equation for less number of logic gates
3	Analyze logic processes and formulate logic operations using combinational logic circuits
4	Understand the architecture of microprocessor and the concept of memory organization, assembly language programming
5	Study interfacing of microprocessor with peripheral devices

Course Outcom Upon successful of	tes (COs): ompletion of this course, the student will be able to:
1EEPC211_1	Attempt conversions among various number systems (K ²)
1EEPC211_2	Transform given Boolean equation for minimum number of logic gates(K ²)
1EEPC211_3	Formulate combinational logic circuits(K ²)
1EEPC211_4	Explain architecture and working of 8085 microprocessor and peripherals(K ²)
1EEPC211_5	Interface 8085 microprocessor with various peripheral devices(K ³)
1EEPC211_6	Design a microprocessor based system for given applications (K ⁴)

Course	Contents:	
Unit 1	Number System, Logic Gates and Boolean Algebra Decimal, Binary, Octal, Hexadecimal, conversions, BCD code, Gray code, Weighted codes, Signed Magnitude Representation Logic gates, Universal gates, Logic families, Performance parameters, Boolean theorem, Boolean algebra	10 Hrs
Unit 2	Combinational Logic Circuit Design- K- map, SOP and POS form, Half adder, Full adder, Subtractor, Magnitude Comparator, Code converter, Multiplexer, De-multiplexer, Encoder, Decoder	07 Hrs
Unit 3	Sequential Logic Circuit Design-I Latches- S-R Latch, Gated Latch- Gated S-R Latch, Gated D Latch, Flip flops-Edge triggered-S-R & Edge triggered-J-K flip flop	05 Hrs
Unit 4	Sequential Logic Circuit Design- II Counters-mod n asynchronous counter, Shift Registers- Serial-In, Serial-Out, Serial-In, Parallel-Out, Parallel-In, Serial-Out, Parallel-In, Parallel-Out.	05 Hrs
Unit 5	Analog to Digital Conversion & Digital to Analog Conversion- Working principle and operation of different types of ADC & DAC, Detailed study of ADC and DAC 0808,0809	05 Hrs
Unit 6	Microprocessor 8085: Architecture, Interfacing, Applications Architecture, Instruction set, Addressing modes, Memory, Assembly language programming, Interrupt, Interrupt service routine, Address decoding, Memory interfacing, Recent Trends in Microprocessor, based system design	10 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

54-ELE-25/34

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	A Textbook of Digital Electronics	R.S. Sedha	S.Chand	Second	2005
02	Advanced Microprocessor& Peripherals	K.M.Bhurchandi A.K.Ray	Tata Mc-Graw Hill	Third	2006
03	Microprocessor 8085 Architecture, Programming Interfacing	Anil Sawarnkar	Genius	Second	2009
04	Fundamentals of Digital Electronics	A.Anand Kumar	PHI	Fourth	2016

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Digital Electronics Principles & Applications	Anil Maini	Wiley	Second	2007
02	Modern Digital Electronics	R.P.Jain	Mcgraw Higher Ed	Fourth	2009
03	Microprocessor and its applications	B.Ram	Tata Mc-Graw Hill	Sixth	2008
04	Digital Design	Morris Mano	Pearson	Fifth	2012
05	Microprocessor Architecture, Programming & Application with 8085	Ramesh Gaonkar	Penram International	Third	1997

HOD Electrical

Dean Academics

Director

Executive Director

54-618-26-134

Class	S. Y. B. Tech. Semester-IV
Course Code and Course Title	1EEPC212, Electromagnetic Engineering
Prerequisite/s	1BSES103, 1EEPC202
Teaching Scheme : Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

	Objective: urse aims to:
01	Introduce the concept of vector analysis and different coordinate systems in the electromagnetic fields
02	Differentiate knowledge on electrostatic field, electrical potential, energy density and their applications.
03	Familiar with concepts of magnetostatic field, magnetic potential and its energy density.
04	Explore the numerical solution for vector quantities associated with electrostatic, magnetostatic and time varying fields.
05	Understand the existence of Maxwell's Equations and propagation of electromagnetic waves

Course Outcom						
Upon successfu	Il completion of this course, the student will be able to:					
1EEPC212_1	Apply different technique of vector analysis and appropriate coordinate systems for physical quantities dealt in Electromagnetic Fields. (K ³)					
1EEPC212_2	Derive the physical quantities of electromagnetic fields in different Engineering Problems.(K ³)					
1EEPC212_3	Determine the Energy, Potential, Capacitance, Inductance and Energy Densities. (K ³)					
1EEPC212 4	Illustrate the boundary conditions at the interfaces of different media (K ³)					
1EEPC212 5	Apply the Maxwell's equations in different forms (K ³)					
1EEPC212_6	Examine the electromagnetic wave propagation in different media and its means for transporting energy or information (K^4)					

Course	Contents:	
Unit 1	Vector Analysis and Coordinate Systems: Scalars and Vectors, need for 3D coordinate systems, rectangular, cylindrical and spherical coordinate systems, transformation between coordinate systems, vector calculus - gradient, divergence and curl, line, surface and volume integrals, divergence theorem, stroke's theorem.	08 Hrs
Unit 2	Electrostatic Fields Coulomb's law, electric field intensity, field due to point and continuous charges, electric field due to finite line charge, circular disc and infinite sheet of charge, electric flux density, gauss's law and its applications, energy and potential, potential gradient, potential field of a point charge and system of charges, electric dipole, equi-potential surfaces.	08 Hrs
Unit 3	Electric Fields in Material Space Current density, continuity of current, properties of conductors and dielectric materials - Boundary conditions between two dielectric media. Capacitance and Capacitors: parallel plate capacitor with single and two dielectric, cylindrical cable, two wire transmission line, Energy and Energy density - Poisson's and Laplace's equations	06 Hrs
Unit 4	Magnetostatic Fields Biot-Savart's law, magnetic field intensity due to infinite long straight conductor, finite length of conductor, circular loop, solenoid and toroid, Magnetic flux density, Ampere's circuital law, infinite sheet of current, boundary conditions, Lorentz Force, force and torque on a closed circuit, Inductance of solenoid, toroid and coaxial cable, Energy and Energy density in a Magnetic Field.	08 Hrs
Unit 5	Time-Varying Fields and Maxwell's Equations: Faraday's laws - transformer and motional emf, conduction and displacement current, Modified Ampere's law, Maxwell's equations in differential and integral forms, Relation between Circuit Theory and Field Theory	06 Hrs
Unit 6	Electromagnetic Wave Propagation: Electromagnetic wave equations, uniform plane wave, wave parameters, wave propagation in free space, lossy and lossless dielectrics, wave propagation in conductors, skin depth, poynting vector and poynting theorem.	06 Hrs

HOD Electrical

Dean Academics

Director

Executive Director

54- Ele -27/34

Text Books:						
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1.	Principle of Electromagnetics	Matthew N.O. Sadiku, S.V. Kulkarni	Oxford University Press	Sixth	2015	
2.	Engineering Electromagnetics	William H. Hayt, John A Buck	Tata McGraw-Hill Publication	Eighth	2014	
3.	Electromagnetics with Applications	John Kraus Daniel Fleisch	Tata McGraw-Hill Publication	Fifth	2017	
4.	Foundation of Electromagnetic Theory	J. R. Reitz, F. J. Milford R. W. Christie	Pearson Education	Fourth	2010	

Reference Books:							
Sr. No	Title	Author	Publisher	Edition	Year of Edition		
1.	Electromagnetics	Joseph.A.Edminister	Schaum's Outline Series	Second	2007		
2.	Elements of Electromagnetic Fields	S.P.Seth	Dhanpat Rai & CO	First	2016		
3.	Electromagnetic Theory & Applications	Ashutosh Pramanik	PHI Learning Private Limited	Fifth	2009		
4.	Electromagnetic Field Theory	K A Gangadhar P.M.Ramanathan	Khanna Publishers	Eighth	2015		

HOD Electrical

Dean Academics

Director

Executive Director

54-Ele-28134

Class	S. Y. B. Tech. Semester- IV
Lab Code and Lab Title	1EEPC255, DC Machines and Transformers Laboratory
Prerequisite/s	1EEES152
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	50/50

	Objectives: se aims to:	
1	Understand electro mechanical energy conversion process.	
2	Learn different types of starters used to start DC machines.	
3	Find suitable testing method to determine performance of particular machine.	
4	Outline test setup for different machines	
5	Determine performance of particular machine from experiment results.	

Course Outcon	nes (COs)
Upon successful	completion of this Lab, the student will be able to:
1EEPC255_1	Determine performance parameters of DC machines& Transformer by using appropriate testing methods. (K ³)
1EEPC255_2	Demonstrate different tests and speed control methods of DC machines. (S ²)
1EEPC255_3	Perform different tests on Transformer to find performance parameters. (S2)
1EEPC255_4	Communicate effectively in the form of oral and writing journal.(S ²)
1EEPC255_5	Practice safety precautions while performing experiments in Laboratory.(A ²)

List of Experiments:

Expt. No.	Title of Experiment
1	Determination of OCC characteristics of d.c generator.
2	Speed control of D.C shunt motor by armature and field control.
3	Determination of performance of DC shunt Motor by Load test
4	Determination of performance of DC shunt Motor by Swinburne's test
5	Determination of performance of DC Motor by Hopkinson's Test.
6	Determination Polarity and Ratio test on single phase transformer/three phase transformer.
7	Determination of performance of single phase & three phase transformer by Open circuit and short circuit test on
8	Determination of performance of single phase & three phase transformer by Load test
9	Parallel operation of single phase transformer.
10	Determination of performance of IΦ Transformer by Sumpner's Test
11	Separation of iron loss into hysteresis and eddy current loss components in a Φ Transformer.
12	Mini Project: Working Model of DC machine, Working Model of Transformer, Different hand tools by using DC motor

Note: Lab should consist of minimum

- 1. Eight Experiments
- 2. One mini project.
- 3. Industrial Visit

HOD Electrical

Dean Academics

Director

Executive Director

St - Gle - 29/34

Class	S. Y. B. Tech. Semester- IV
Course Code and Course Title	1EEPC256, Digital Electronics & Microprocessor Laboratory
Prerequisite/s	1EEES156
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	50/ 50

	e Objectives: urse aims to:
01	Acquire the knowledge of digital logic levels and their pin functions
02	Perform design and analysis of various digital electronic circuits
03	Tabulate observations and correlate results and provide valid conclusions
04	Perform testing of circuits along with simulation software like Proteus and acquire the knowledge of writing assembly language program for Microprocessor based practical
05	Acquire the experience of working individually and in team for troubleshooting of simple circuits
06	Follow professional ethics and responsibilities during conduction of lab sessions

Course Outcor Upon successfu	nes (COs) I completion of this Lab, the student will be able to:
1EEPC256_1	Identify electronic components their pin functions and packages (K1)
1EEPC256_2	Demonstrate digital electronics circuit on experimental set ups (K4)
1EEPC256_3	form(S)
1EEPC256_4	Develop the skill of writing assembly language program for Microprocessor based practical (S ²)
1EEPC256_5	Acquire experience of working individually as well as a team in designing, building and troubleshooting simple analog electronic circuits (A^2)

Experiment List:

Expt. No.	Title of Experiment
1.	Identify and draw the basic logic gates and electronic components and their pin functions
2.	Design of Half adder & Full adder
3.	Design of Combinational logic circuit from SOP or POS equation
4.	Design of Combinational logic circuit using Multiplexer &De multiplexer
5.	Design of mod n asynchronous counter
6.	Design of basic logic gates in Proteus Software
7.	Design of Half adder & Full adder in Proteus Software
8.	Design of Combinational logic circuit from SOP or POS equation in Proteus Software
9.	Assembly language programming of 8085 microprocessor for arithmetic instructions
10.	Assembly language programming of 8085 microprocessor for looping instructions

HOD Electrical

Dean Academics

Director

Executive Director

St- 8e-20134

Class	S. Y. B. Tech. Semester- IV
Course Code and Course Title	1EEES257, Simulations for Electrical Engineering
Prerequisite/s	1EEES158, 1EEES254
Teaching Scheme: Lecture/Tutorial /Practical	00/00/02
Credits	01
Evaluation Scheme: ISE/ESE	50/50

	e Objectives: urse aims to:
01	To introduce various features and tools available in software package for Electrical Engineering.
02	To explain the significance of programming and simulations in Electrical Engineering.
03	To understand the different functions and commands required for programming.
04	To study system performance with the help of programming and simulation.
05	To motivate the students to provide the solutions for electrical circuits or problems by applying the knowledge of software packages.

Course Outcom Upon successfu	nes (COs): I completion of this course, the student will be able to:
1EEES257_1	List various features and tools available in software MATLAB for Electrical Engineering. (K ²)
1EEES257_2	Apply the Knowledge to solve electrical engineering problems using MATLAB programming or simulation. (K ³)
1EEES257_3	Analyze the system parameters using various functions. (K ⁴)
1EEES257_4	Implement the simulations of transformer, DC machines, Rectifiers, Inverters, Resonant circuits etc.(S ²)
1EEES257_5	Execute the system operations using MATLAB (S ²)
1EEES257_6	Perform individually or in a team to solve open ended problems in Electrical Engineering and communicate effectively to represent. (A ²)

List of Experiments:

Expt. No.	Title of the Experiments
1	Matrix Manipulation Using MATLAB
2	Signal Manipulation & Plotting of Continuous and Discrete signals in MATLAB
3	Programming of Newton Raphson method to solve nonlinear equations using MATLAB
4	Programming of Secant method to solve nonlinear equations using MATLAB
5	Simulation of Electric RLC Circuit and Resonant circuit using MATLAB Simulation
6	Simulation of DC Machine And Evaluation of its Performance Using MATLAB
7	Simulation of Single Phase Transformer and evaluation of system performance
8	Simulation of Gate Pulse Generation and analysis of waveforms
9	Simulation and Analysis of Rectifier and inverter Using MATLAB
10	Measurement of active and reactive power for given circuit
11	Analysis of Network Theorems.

HOD Electrical

Dean Academics

Director

Executive Director

SY-ELE - 31/34

Sr. No	Books: Title	Author	Publisher	Edition	Year of Edition
1	Getting started with MATLAB	Rudra Pratap	Oxford Publications	Third	2005
2	MATLAB: An Introduction with Applications	Rao V. Dukkipati	New Age International Publishers	First	2010
3	MATLAB & Simulink For Engineers	Agam Kumar Tyagi	Oxford Publications	First	2012
4	MATLAB: A Practical Approach	Stormy Attaway	Elsevier	Second	2009

Refer	ence Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1.	A Guide to MATLAB (R): For Beginners and Experienced Users	Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg	Cambridge University Press	Third	2014	
2.	Essential MATLAB for Engineers and Scientists	Brian Hahn, Valentine, Daniel T.	Academic Press	Fifth	2013	
3.	MATLAB for Engineers	Holly Moore	Pearson	Fourth	2013	
4.	MATLAB for Beginners: A Gentle Approach	Peter I. Kattan	Createspace Independent Pub	Second	2008	

HOD Electrical

Dean Academics

Director

Executive Director

54-Eie-32/34

Class	S. Y. B. Tech. Semester- IV	
Course Code and Course Title	1EEHS258, English Proficiency	
Prerequisite/s	1EEHS158	
Teaching Scheme: Lecture/Tutorial /Practical	00/00/02	
Credits	01	
Evaluation Scheme: ISE / ESE	50/00	

	Objectives: urse aims to:
01	To motivate and guide students to perform better in formal communicative events.
02	To encourage students to prepare and deliver power point presentation.
03	To develop student's team spirit for effective participation in team.
04	To make students familiar with formal situations by using Language Lab software to understand and perform in their professional life.
05	To improve student's performance in written communication, necessary in profession.

Course Outcome Upon successful	es (COs): completion of this course, the student will be able to:	
1EEHS258_1	Prepare and perform better in formal communicative events. (S3)	
1EEHS258_2	Prepare and deliver power point presentation effectively. (S3)	
1EEHS258_3	Strengthen their team spirit and perform effectively in a team. (A3)	
1EEHS258_4	Improve their intonation, vocabulary and communicative performance. (S1)	
1EEHS258_5	Write application letter and resume effectively. (S3)	

List of Practical:

Sr. No.	Name of Practical
01	Elocution
02	Group Discussion I
03	Language Lab Session I
04	Debate
05	Group Discussion II
06	Language Lab Session II
07	Application Letter & Resume Writing
08	Extempore
09	PPT
10	Mock Interview

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	The Fundamental Aspects of Communication Skills	Prajapati Prasad	S.K. Katariya and Sons	Fifth	2012
02	Effective Technical Communication	Ashraf Rizvi	Tata McGraw Hills	Fifth	2018
03	Group Discussion: A Practical Guide to Participation and Leadership	Julia T. Wood, Gerald M. Phillips	Waveland Press	Fourth	2007

HOD Electrical

Dean Academics

Director

Executive Director

SY-Ele-33/34

Refer	ence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	High-school English Grammar and Composition	Wren and Martin	S. Chand and Co., New Delhi	First	2011
02	The Ace of Soft Skills	Gopalswami Ramesh, Mahadevan Ramesh.	Pearson Publication, Delhi.	Second	2011
03	Business Communication	P. Shubha Rao, B. Anita Kumar, C. Hima Bindu	Cengage Learning India	Third	2017
04	Business Correspondence and Report Writing	R. C. Sharma, Krishna Mohan	Tata McGraw Hills	Fifth	2016

HOD Electrical

Dean Academics

Director

Executive Director

54-ac-34/34

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Curriculum T. Y. B. Tech. Semester- V

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

B. Tech. Semester-V

							Ev	aluatio	n Sche	me	
Course Code	Course	7	[eacl	ning	Scheme	Scheme		Theory Marks		1	actical Iarks)
Code		L	T	P	Credits	Scheme	Max		n. for ssing	Max	Min. for Passing
						ISE - I	10				
1##OE###	Open Elective- I	3	_		2	MSE	30		40		-
1##OE###	Open Elective-1	3	-	-	3	ISE - II	10		40		
حالة حالة	SERVE SERVE					ESE	50	20			
	*: 100					ISE - I	10				
1EEPC303	Control Systems	1				MSE	30		40		
TEEPC303	Control Systems	4	-	-	4	ISE - II	10		40		
2	*					ESE	50	20			777
						ISE - I	10				
* ~ EPC304	AC Mashines	1				MSE	30		40		
SPC304	AC Machines	4	-	-	4	ISE - II	10		40		
	No.					ESE	50	20			
	lucie 4					ISE - I	10			***	
1EEPC305	Power Electronics	١,				MSE	30		40		***
TEEPC303	Power Electronics	4	-	-	4	ISE - II	10		40		
17						ESE	50	20			
				9 1		ISE - I	10		it.	22	<u></u>
1EEPC308	D C 4 - 1 - 1					MSE	30		4.0		-
TEEPC308	Power Systems Analysis	4	-	-	4	ISE - II	10		40		
						ESE	50	20			
1EEPC351	Control Systems Laboratory	-	-	2	1	ISE				25	10
1EEPC352	AC Machines Laboratory	-	_	2	1	ISE				25	10
1221 0332	The ividenmes Editoriatory	355	STREET, STREET	4	-	ESE		POE		50	20
1EEPC353	Power Electronics			2	1	ISE	45/0			25	10
TEEPCSSS	Laboratory	-	-	2	1	ESE		POE		50	20
1EEPC354	Power Systems Analysis Laboratory	-	- 1	2	1	ISE				25	10
EMC309	Constitution of India	2	-	-	7-	ISE		Grade			
	Total	20	-	8	23		500			200	

Course Category	HS	BS	ES	PC	PE	OE	PR
Credits				20		03	
Cumulative Sum	05	20	27	52		03	,

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

[1##OE###] Open Elective - I

Course Code	Course Name	Course Offered by
1ME0E101	Machines and Mechanisims	No. 1 I.P
1ME0E102	Manufacturing Engineering	Mechanical Engineering
1CSOE301	Database Essentials	
1CSOE302	Software Engineering and Project Management	Computer Science and
1CSOE303	Data Structures and Algorithms	Engineering
1EEOE301	Electrical Technology	DI VI ID
1EEOE302	Electrical and Electronics Measurements	Electrical Enginnering
1CVOE301	Air Pollution & Control	O. 1.F
1CVOE302	Remote Sensing & GIS Applications	Civil Enginnering
1AUOE301	Product design and development	1
1AUOE302	Automotive Refrigeration and air conditioning	Automobile Engineering
1AEOE101	Introduction to Aerospace Engineering	
1AEOE102	Drone Pilotting	Aeronautical Enginnering

HOD-Electrical

Dean Academ

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

T.Y. B. Tech, SemV
1EEOE301, Electrical Technology
1EEES103
03/00/00
03
10/30/10/50

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEOE301_1	Explain the construction & working of electric motors.
1EEOE301_2	State the applied principles of electrical engineering.
1EEOE301_3	Classify electrical heating methods for industrial furnaces.
1EEOE301_4	Choose suitable types of motors for industrial applications of electrical drives.
1EEOE301_5	Select suitable starter & speed control methods for electrical motors.
1EEOE301_6	Solve numerical to determine the different parameters of electrical motors & energy conversion.

Course	Contents:	
Unit 1	DC motors: Construction, working, types, back emf, speed equation, torque equation, speed torque characteristics, power losses in D.C. motors, need of starter, 3 point starter, 4 point starter, speed control of D.C. shunt and series motor (numerical treatment on speed control methods). reversal rotation of D.C motor, electric braking of shunt and series motor	10 Hrs.
Unit 2	Three Phase Induction Motor: Construction, types, working, speed equation, torque equation, starting torque, full load torque, torque speed characteristics, power stages in motor (Numerical treatment on power stages), advantages of 3- phase Induction motor.	07 Hrs.
Unit 3	Three Phase Induction Motor Control: Need of starter, star delta starter, DOL starter, autotransformer starter, rotor resistance starter, speed control methods- pole changing, voltage control, frequency control, block diagram of VFD (v/f) control, reversal rotation 3- phase Induction motor	07 Hrs.
Unit 4	Special Purpose Motors: Construction, working, characteristics and applications of single phase Induction motor, AC servo motor, DC servo motor, stepper motor (VR type and PM type), Introduction to BLDC motor and linear induction motor, universal motor	06 Hrs.
Unit 5	Electrical Drives: Advantages of electrical drives, types — individual & group drive, nature of mechanical loads with respect to speed—torque variation, nature of mechanical loads with respect to duty period, 4 quadrant operation of DC motor, criteria for selection of motors for applications like lathe, traction, pumps, conveyors, lift.	06 Hrs.
Unit 6	Electric Heating: Types of electrical heating, construction and working of - direct & indirect resistance heating, direct arc furnace, indirect arc furnace, core type induction furnace, coreless induction furnace. (numerical treatment on electrical to thermal energy conversion) Recent trends in Electrical Technology.	06 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1.	Textbook of Electrical Technology, VolII	B. L. Theraja	S. Chand Publication	First	2012
2.	Electrical Technology	H. Cotton	CBS Publishers & Distributors Pvt. Ltd.	First	2005
3.	Principles of Electrical Machines	V. K. Mehta, Rohit Mehta	S. Chand Publication	Second	2016
4.	Utilization of Electric Power & Electric Traction	J. B. Gupta	S. K. Kataria& Sons	Ninth	2011
5.	Fundamentals of Electrical Engineering & Electronics	B. L. Theraja	S. Chand Publication	First	2009
6.	Electrical Technology	U. A. Bakshi	Technical Publication Pune	Fourth	2009

Refe	erence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1.	Electrical Technology: Machines and Measurements, Vol-II	Surinder Pal Bali	Pearson	First	2013
2.	Electrical and Electronic Technology	Edward Hughes: Revised by John Hiley, Keith Brown, Ian McKenzie Smith	Pearson Education	Ninth	2009
3.	Utilization of Electric Power & Traction	Tanmoy Deb	Ane Books Pvt. Ltd.	First	2012
4.	Utilisation of Electric Power: Including Electric Drives and Electric Traction	N. V. Suryanarayana	New Age International	First	2007
5.	Electrical Power	S. L. Uppal	Khanna	Thirteenth	1988

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEOE302, Electrical and Electronics Measurement
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcon Upon successfu	mes (COs): al completion of this course, the student will be able to:
1EEOE302_1	Illustrate various concepts of measuring instruments (Analog/Digital), their classification, construction, working and range extension technique.
1EEOE302_2	Explain construction and operation of different transducers.
1EEOE302_3	Describe various analyzers, its types & modern techniques in measurement.
1EEOE302_4	Derive the equations of different methods for measurement of Various Electrical Parameters.
1EEOE302_5	Solve numerical to determine different electrical parameters in Electrical and Electronics Measurement.

Curricult	ım Content :	
Unit 1	Principles of Analog Measuring Instruments: Static and dynamic characteristics, electrical Standards, Types of Errors. Essentials of indicating instruments: deflecting, controlling and damping systems. Construction, working principle, advantages and disadvantages of Moving Iron (MI) (attraction and repulsion), Permanent Magnet Moving Coil (PMMC) & Dynamometer type instruments. Extension of ranges by using shunts, Multipliers (numerical expected).	08 Hrs.
Unit 2	Measurement of Resistance, Inductance & Capacitance: Measurement of low, medium and high resistance. Wheatstone bridge, Kelvin's double bridge, ammeter-voltmeter method, Megger, Maxwell's Inductance bridge, Maxwell's Inductance & Capacitance Bridge, Hay's bridge, Owen's bridge, De sauty's Bridge, Schering Bridge, Weins Bridge. (numerical expected on bridges)	08 Hrs.
Unit 3	Measurement of Power and Energy: Active & reactive power measurement in three phase system for balanced and unbalanced load using three wattmeter method, two wattmeter method & one wattmeter method (numerical expected). Construction, working principle, Calibration of single phase induction type energy meter.	08 Hrs.
Unit 4	Principles of Digital Measuring Instruments: Advantages of digital meters over analogue meters. Resolution & sensitivity of digital meters. Working principles of digital Voltmeter, Multimeter, Construction and working principle of CRO, measurement of voltage, current, period and frequency by CRO, Lissajous pattern, Construction and working principle of DSO, advantages and disadvantages of DSO over CRO.	07 Hrs.
Unit 5	Transducers: Transducers: Introduction, classification of transducers. Electrical transducer, Resistive transducer, Inductive transducer, Capacitive transducer, Piezoelectric Transducers, strain guage, LVDT and RVDT, Digital Transducers.	07 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 6 Recent developments in Electrical and Electronics Measurements:
Wave Analyzers, Power Analyzer, Smart Sensors, Virtual Instrumentation.

Text	books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	A Course in Electrical and Electronic Measurements & Instrumentation	A. K. Sawhney	DhanpatRai& Co.	Nineteenth	2014
02	A Course in Electronics & Electrical Measurements & Instrumentation	J. B. Gupta	S. K. Kataria& Sons.	Eighth	2012
03	Electronic Instrumentation	H.S.Kalsi	Tata McGraw Hill	Third	2012
04	Measurement Systems	Ernest, O Doeblin, Dhanesh N. Manik	Tata McGraw Hill	Fifth	2008

Refe	rence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Electrical Measurements & Measuring Instruments	E. W. Golding F. C. Widdies	Reem Publications.	Third	2011
02	Introduction to Measurements and Instrumentation	Arun K. Ghosh	PHI Publication	Fourth	2012
03	Electrical Measurement & Instrumentation	R.S SirohiRadhakrisnan	New Age International	Third	2010
04	Instrumentation Measurement and Analysis	B., K. C. Nakra K Chaudhari,	Tata McGraw Hill.	Second	2009

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEPC303, Control Systems
Prerequisite/s	1EEPC208
Teaching Scheme: Lecture/Tutorial/Practical	03/01/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcor Upon successfu	nes (COs): I completion of this course, the student will be able to:
1EEPC303_1	Explain different components and controllers used in control system along with its transfer function
1EEPC303_2	Apply the state space for representation for different control system.
1EEPC303_3	Determine the transfer function using block diagram reduction and signal flow graph.
1EEPC303_4	Compute the performance parameters for given system
1EEPC303 5	Analyze the stability of the given system in time &frequency domain.

Course	Contents:	
Unit 1	Introduction to Control System and Mathematical Modeling Introduction, types of systems, feedback control system, modeling of electrical, mechanical systems, Force Voltage and Force current analogy, Determination of the transfer function using block diagram reduction and signal flow graph, Mason's Gain formula.	08 Hrs.
Unit 2	Components of Control Systems Error detectors, potentiometer, synchros, optical rotary encoders, DC and AC servomotors, stepper motor, gear trains, AC and DC taco-generators, transfer function of components of control system and its applications.	06 Hrs.
Unit 3	Time Domain Analysis of Control system Response of first and second order system, generalized second order system, steady state error, static error constants and type of system, steady state error specifications, Routh-Hurwitz criteria for stability, Introduction of PID Controller.	10 Hrs.
Unit 4	Root Locus Definition of root locus, rules for plotting root loci, root contour, stability analysis using root locus, Determination of gain from root locus, effect of addition of pole and zero on root locus.	05 Hrs.
Unit 5	Frequency Response Analysis of Control system Introduction to frequency response, frequency domain performance specifications, stability analysis of system using Bode plots, Obtaining transfer function from Bode plot, Polar plot, Nyquist plot, stability criterion, co-relation between time domain and frequency domain.	05 Hrs.
Unit 6	State Space Representation Introduction to State space, phase variable form, canonical form, conversion of transfer function to state space and vice versa, state transition matrix and its significance, Eigen values, Eigen vectors, solution of state equations, controllability and Observability.	08 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Sr. No	Books:	Author	Publisher	Edition	Year of Edition
01	Control System Engineering	I.J. Nagrath M. Gopal	New Age International Publication	Fifth	2009
02	Control System Engineering	Norman Nise	Wiley Publication	Sixth	2013
03	Modern Control Engineering	Ogata	Prentice Hall	Fifth	2010
04	Feedback Control Systems	U. A. Bakshi& S. C. Goyal	Technical Publications	Second	2008

Refe	erence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Automatic Control System	Kuo&Golnaraghi	Wiley	Ninth	2013
02	Control Systems: Theory and Applications	Smarajit Ghosh	Pearson Education	Second	2012
03	Control Systems	N. C. Jagan	B. S. Publications	Second	2008
04	Feedback Control Systems	C.L. Phillips, R.D. Harbor,	Prentice Hall	Fourth	1999

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEPC304, AC Machines
Prerequisite/s	1EEES103, 1EEPC210
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	mes (COs):
Upon successfi	al completion of this course, the student will be able to:
1EEPC304_1	Explain the constructional details and working principle of AC machines
1EEPC304_2	Describe the effects of system parameters on performance of AC Machines.
1EEPC304_3	Solve numerical to determine the performance parameters of AC machines.
1EEPC304_4	Select the suitable starter & speed control method for specific application.
1EEPC304 5	Analyze the performance of a AC machine by using appropriate testing methods.

	Three Phase Induction Motor	
Unit 1	Construction Details, Production of Rotating magnetic field and Principle of operation, Types of rotors, Rotor quantities (emf, current, frequency, pf), Torque Equation, Torque-Slip Characteristics, Necessity of starters for 3 ph. Induction motors, types of starters (DOL, autotransformer, star-delta, rotor resistance starter), Speed control methods from stator side (Stator voltage control, Stator Frequency control, Pole changing) & rotor side (rotor resistance control, Cascade control, EMF injection control), Braking Methods, Applications of 3 ph. Induction motors to Electric vehicle (Numerical Expected)	10 Hrs.
Unit 2	Performance of Induction Motor Standards for testing (IEC, IS), Losses and Efficiency, Direct load test, No load & blocked rotor test, equivalent circuit of 3 phase induction motor, power flow diagram, Phasor diagram of 3 phase induction motor, performance of 3 phase induction motor using circle diagram, crawling & cogging, Induction motor as induction generator, Double cage induction motor and its characteristics, (Numerical Expected)	12 Hrs.
Unit 3	Three Phase Alternator Construction Details, principle of operation, Emf equation, parameters of armature winding (Resistance & leakage reactance), armature reaction (at unity, lagging zero and leading zero power factor), concept of synchronous reactance and synchronous impedance. Equivalent circuit of 3 phase alternator, alternator on load (resistive, inductive & capacitive)(Numerical Expected)	08 Hrs.
Unit 4	Performance of Alternator Standards for testing (IEC, IS), Direct load test,OC test & SC test on 3 Phase alternator, voltage regulation methods (EMF, MMF, ZPF and direct loading method), Losses and efficiency, Necessity for parallel operation of alternators, conditions for parallel operation, synchronizing procedures, hunting and oscillation in alternators(Numerical Expected)	10 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 5	Construction and principle of operation, necessity of starters, Starting methods of synchronous motors, Phasor Diagrams of three phase synchronous motor at Unity, lagging and leading power factor, Effect of Varying Field Current and Load, V & inverted V Curves, Operation of Synchronous motor as Synchronous Condenser, Hunting	
Unit 6	Single Phase Induction motors and Special Purpose Motors Single Phase Induction Motor- Double field Revolving theory, Equivalent Circuit, Split phase induction motor, Capacitor start induction motor, Capacitor start capacitor run induction motor (two value capacitor method), shaded pole induction motor, AC Servo motor, universal motor, linear induction motor, switched reluctance motor, Permanent magnet Synchronous motor, Applications to electric vehicle	08 Hrs.

Text Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Electric Machinery	Bimbhra P.S	Khanna Publisher	Seventh	2011
2	Principles of Electric Machine	V. K. Mehta	Tata Mcgraw Hill	First	2006
3	Electric machines	Ashfaq Husain	Dhanpatrai And Co.Publication	Third	2016
4	Electric Machinery	A.E Fitzgerald Stephen Kingsly	Tata Mcgraw Hill	Fourth	1983

Refere	ence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Generalized Machine Theory,	Bhimra P.S	Khanna Publisher	Fourth	1987
2	Electric Machines	Kothari D.P Nagrath I.J	THM Publications	Fourth	2010
3	Electric machines	M.V.Deshpande	PHI Publication	First	2011
4	Electric machines	Samarjit Ghosh	Pearson	Second	2012

HOD-Electrical

Dean Academics

Director

Executive Director

TY RA-14/41

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEPC305, Power Electronics
Prerequisite/s	1EEES108,1EEPC203,
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcon Upon successfu	mes (COs): al completion of this course, the student will be able to:
1EEPC305_1	Describe construction, working and operation of power semiconductor devices.
1EEPC305_2	Draw performance characteristics of power semiconductor devices.
1EEPC305_3	Discuss power electronic converters with respect to the power circuit, working and waveforms for different loads.
1EEPC305_4	Estimate the performance parameters of power electronic converters.
1EEPC305_5	Solve numerical to determine performance parameters of power electronic converters.
1EEPC305_6	Apply the knowledge of power electronic converters for advanced applications.

Course	Contents:	
Unit 1	Power Semiconductor Devices and Commutation Circuits Configuration, principle of operation, characteristics of power semiconductor devices (Power Diodes, SCR, TRIAC, Power MOSFET, IGBT, GTO), triggering methods and commutation techniques.	10 Hrs.
Unit 2	Diode Rectifiers Construction, working, performance analysis of single phase half wave rectifiers with R, RL load with and without freewheeling diodes, single phase full wave rectifier with R, RL load with and without freewheeling diodes, three phase half wave rectifiers with R load, three phase bridge rectifiers with R load.	09 Hrs.
Unit 3	Single Phase Controlled Converters Construction, working, performance analysis of single phase half and full wave controlled converter with R, RL load, single phase half bridge controlled converter with R, RL load, single phase full bridge controlled converter with R load, R-L load, effects of source inductance. Dual Converters: Construction, working, performance analysis of single phase and three phase dual converter with R, RL load.	09 Hrs.
Unit 4	Three Phase Controlled Converters Construction, working, performance analysis of three phase half bridge controlled converter with R, RL load, Three phase full bridge controlled converter with R, RL load. Cycloconverters: Principle, working and performance analysis of single phase and three phase cycloconverters, Introduction to Matrix Converter	09 Hrs.
Unit 5	DC-DC Converter: Chopper Introduction to DC to DC converter, configurations of Chopper, Principle, working and performance analysis of step-up and step-down Chopper, Control strategies of Chopper, types of Chopper, Buck-Boost Converter, Applications of Chopper	07 Hrs.
Unit 6	DC-AC Converters and Advanced Topic in Power Electronics: DC-AC Converters: Inverters Introduction to inverters, working principle and operation of Single Phase half and full Bridge inverter, Voltage Source Inverter (VSI), three-phase- six step	12 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

(120/180 degree mode of operation), principle of operation for Current Source Inverter (CSI)

Advanced Topic in Power Electronics:

PWM techniques-Single, Multiple and Sinusoidal PWM. Dual active bridge converter, Solid State Transformer principle, types and applications. Uninterruptable Power Supply (UPS).

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Power Electronics: Devices, Circuits and applications	Muhammad H. Rashid	Prentice Hall of India	Fifth	2013
02	Power Electronics	P.S. Bimbhra	Khanna Publishers, New Delhi	Third	2012
03	Electrical Machines & Drives, A First course	Ned Mohan	Wiley Publications	First	2012
04	Power Electronics	M. D. Singh & K. B. Kanchandhani	Tata McGraw - Hill Publishing	First	1998

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Power Electronics: Principles and Applications	Joseph Vithayathil	McGraw Hill Publication	first	2010
02	Power Electronics	B.W.Williams	John Willey	Second	2009
03	Power Electronics, Converter Applications and Design",	Mohan, Undel and and Robins	John Wiley and sons (Asia) Pvt. Ltd.	Third	2001
04	Thyristorised Power Controllers	G.K. Dubey, S. R. Doradla, A. Joshi and R. M., K. Sinha	New Age International (P) Limited Publishers	First	1999.

HOD-Electrical

Dean Academics

Director

Executive Director

MRC - INILIAL

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T. Y. B. Tech, Sem V
Course Code and Course Title	1EEPC308, Power System Analysis
Prerequisite/s	1EEPC202, 1EEPC209
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcon Upon successfu	mes (COs): Il completion of this course, the student will be able to:
1EEPC308_1	Explain the fundamentals of power systems analysis under steady state and fault conditions.
1EEPC308_2	Model power system components under steady state condition to study the system performance.
1EEPC308_3	Calculate power system parameters under steady state conditions.
1EEPC308_4	Draw various kinds of network diagram required for power system analysis.
1EEPC308_5	Derive an equation of system parameters under steady state and fault condition on transmission lines.
1EEPC308_6	Determine the system parameters under various kinds of fault on transmission lines.

Course	Contents	
Unit 1	Performance of Transmission Lines Introduction and classification of transmission lines, short, medium, long transmission lines, generalized constants of transmission lines, Ferranti effect, surge impedance loading, tuned power lines, complex power flow through a transmission line, receiving end power circle diagram for transmission line (assuming ABCD constants are already given), numerical treatment expected, one case study of short/medium/long distance transmission line in Maharashtra.	10 Hrs.
Unit 2	Per unit Representation of Power system & its Components Introduction, single phase representation of balanced 3 phase networks, single line diagram, impedance & reactance diagram, introduction of per unit system, P.U. representation of transformer, representation of generator, P.U. impedance diagram of power system, representation of loads, numerical based on network reduction by using per unit system, one case study of power transmission/distribution substation in Maharashtra.	06 Hrs.
Unit 3	Load flow analysis Load flow analysis introduction and its importance, bus classifications, nodal admittance matrix (Y _{BUS}) formation, development of load flow equations, load flow solution using iterative techniques like Gauss Seidel, Newton Raphson method, Decoupled and Fast Decoupled methods. Comparison of Load Flow methods, Algorithms & flow charts numerical treatment expected, one case study of power transmission/distribution substation in Maharashtra.	11 Hrs.
Unit 4	Symmetrical Fault Analysis Introduction to fault, types of faults, transient on transmission line, short circuit current and reactance's of synchronous machine on no load and loaded condition, short circuit MVA, algorithm for short circuit studies, Z- bus formulation (step by step method without mutual coupling), selection of circuit	10 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

	breakers and current limiting reactors and their location in power system, numerical treatment expected, one case study of power transmission/distribution substation in Maharashtra.	
Unit 5	Symmetrical Components Introduction to symmetrical components, symmetrical component transformation, phase shift in star-delta transformers, sequence impedances and sequence network of transmission line, synchronous machine and transformer, power invariance, construction of sequence network of a power system, numerical treatment expected.	10 Hrs.
Unit 6	Unsymmetrical Fault Analysis Introduction to unsymmetrical fault analysis, symmetrical component analysis of unsymmetrical faults, single Line to Ground (L-G) fault, Line to Line (L-L) fault, Double Line to Ground (L-L-G) fault, open conductor faults, bus impedance matrix for analysis of unsymmetrical shunt faults, numerical treatment expected, one case study of power transmission/distribution substation in Maharashtra.	09 Hrs.

Text Sr.	Book:				
No	Title	Author	Publisher	Edition	Year of Edition
01	Power System Engineering	D.P. Kothari, I. J. Nagrath	Mc-Graw Hill Publications	-	2019
02	Modern Power System Analysis	D.P. Kothari, I. J. Nagrath	Mc-Graw Hill Publications	Fourth	2011
03	Electrical Power Systems	AshfaqHussain	CBS publishers, New Delhi	Third	2007
04	Power System Analysis	HadiSaadat	Tata Mc-Graw Hill	First	2002
05	Power System Analysis	A.R. Bergen and Vijay Vittal	Pearson Education	Second	2009

Sr. No	rence Book:	Author	Publisher	Edition	Year of Edition
01	Power System Analysis	Grainger John J and W D Stevenson	McGraw Hill	First	1994
02	Power System Analysis	P S R Murhty	BS Publication	First	2007
03	Electrical Power Systems	D. Das	New Age international	First	2010
04	Electric Power Systems: A first course	Ned Mohan	Wiley Publication	First	2012

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV	
Course Code and Course Title	1EEPC351, Control Systems Laboratory	
Prerequisite/s	1EEPC208	
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02	
Credits	01	
Evaluation Scheme: ISE / ESE	25/00	

Course Outcon	mes (COs) al completion of this course, the student will be able to:
1EEPC351_1	Sketch the response of system for a given transfer function.
1EEPC351_2	Analyze the performance of system in time and frequency domain.
1EEPC351_3	Demonstrate relationship between transfer function and state space using MATLAB.
1EEPC351_4	Communicate effectively about laboratory work orally and through writing journals.
1EEPC351_5	Practice professional and ethical behavior to carry forward in their life.

Expt. No.	Title of Experiment	
1	Generate and plot standard test signals by using MATLAB	
2	Creation of transfer function	
3	Block diagram reduction using MATLAB	
4	Time domain specifications of a system	
5	Stability of control system using Root locus by using MATLAB	
6	Stability of control system in frequency domain by using MATLAB	
7	Conversion of Transfer Function to State space and vice- versa by using MATLAB	
8	Controllability and Observability of given system by using MATLAB	
9.	DC Motor Speed Controller	
10	DC Voltage regulator as closed loop control system.	
11.	DC position control system.	

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Lab Code and Lab Title	1EEPC352, AC Machines Laboratory
Prerequisite/s	1EEES152, 1EEPC255
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/50

Course Outco Upon successf	mes (COs) ul completion of this Lab, the student will be able to:
1EEPC352_1	Implement the working principle of AC machines in a practical manner
1EEPC352_2	Demonstrate different tests on Induction machines.
1EEPC352_3	Perform different tests on Synchronous Machines.
1EEPC352_4	Respond Effectively in the form of oral and writing journal.
1EEPC352_5	Justify the result of the experiment from the observations.

List of Experiments:

Expt. No	Title of Experiment				
1	Speed control methods of three phase induction motor				
2	Efficiency & speed regulation of 3 phase Sq. cage induction motor (SCIM) by directloading method				
3	Efficiency & speed regulation of 3 phase SCIM by indirect loading method				
4	Efficiency & speed regulation of 1 phase induction motor.				
5	Efficiency of Alternator by direct loading method				
6	Voltage regulation of Alternator by direct loading method				
7	Voltage regulation of an alternator by EMF, MMF, ZPF method				
8	Determination of load sharing by parallel operation				
9	Synchronization of Alternator				
10	Determination of efficiency of synchronous motor by direct loading				
11	Determination of V and Inverted V curves of a synchronous motor				
Industrial V					

The lab must contains minimum 8 experiments and a industrial visit

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEPC353, Power Electronics Laboratory
Prerequisite/s	1EEES156, 1EEPC252
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/50

Course Outcon Upon successful	nes (COs): completion of this course, the student will be able to:
1EEPC353_1	Select a suitable power converter for given application.
1EEPC353_2	Plot operating characteristics of various Power Semiconductor Devices.
1EEPC353_3	Implement different power electronic circuits.
1EEPC353_4	Simulate various power electronic converters using MATLAB
1EEPC353_5	Work in groups for perforating experiment.
1EEPC353_6	Demonstrate acceptable presentation skills through experiment report.

List of Experiments

Expt. No.	Title of the Experiment			
1	V-I Characteristics of Various Power Semiconductor Devices			
2	Gate Firing circuits for SCR's (R, RC, UJT, ramp and pedestal.)			
3	Single Phase Half-Wave Controlled Rectifier with R and RL load			
4	Single Phase Full controlled bridge converter with R and RL loads.			
5	Three Phase Half -Wave Converter with R Load.			
6	Three Phase Full-Wave Bridge Converters with R Load.			
7	Dual Converter.			
8	D.C. Chopper.(Step up and Step Down)			
9	Simulation of single phase controlled converter with R-L Load			
10	Simulation of three phase controlled converter with R Load			
11	Simulation of single phase inverter			
12	Simulation of dual active bridge converter.			
Mini Projec	t on Converter Design			
Design any	one Converter in a group of maximum 5 students in each batch			

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEPC354, Power System Analysis Laboratory
Prerequisite/s	1EEES152, 1EEPC251, 1EEES257
Teaching Scheme Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE /ESE	25/00

Course Outco	omes (COs): al completion of this course, the student will be able to:
1EEPC354_1	Develop the MATLAB program to determine the power system parameters.
1EEPC354_2	Demonstrate the performance of transmission line using transmission line trainer kit.
1EEPC354_3	Use the modern software like ETAP/ Power World Simulator/ MATPOWER to understand the concepts of the power system under steady state and fault conditions
1EEPC354_4	
1EEPC354_5	Practice the safety rules in the laboratory and behave ethically in time standards.

List of Experiments

Expt. No.	Title of Experiment			
1.	Measurement of ABCD parameters of a medium/long transmission line.			
2.	Efficiency and voltage regulation of Short/medium/long transmission line.			
3.	Ferranti Effect on transmission line.(Using transmission line trainer kit)			
4.	Y- Bus matrix of a power system using MATLAB.			
5.	Gauss-Seidal method using MATLAB.			
6.	Newton-Raphson method using MATLAB.			
7.	Transients in series R-L circuit &synchronous generator behavior under symmetrical fault			
8.	Symmetrical fault analysis of a 3-bus system using MATLAB.			
9.	Conversion of phasors to symmetrical components and vice versa using MATLAB			
10.	positive, negative and zero sequence impedances of transformer (hardware)			
11.	Power System operation using ETAP/power world simulator.			
12.	Unsymmetrical fault analysis for LL, LG, LLG Faults using MATLAB /ETAP /Power world simulator			

^{**}Minimum eight experiments should be performed in laboratory.

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemV
Course Code and Course Title	1EEMC309, Constitution of India
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial/Practical	02/00/00
Credits	02
Evaluation Scheme: ISE I / MSE / ISE II / ESE	Grade

Course Outcon	nes (COs): completion of this course, the student will be able to:
1EEMC309 1	Explore the basic features and modalities about Indian constitution
1EEMC309_2	Differentiate the functioning of Indian parliamentary system at the center and state level
1EEMC309_3	Describe different aspects of Indian Legal System and its related bodies
1EEMC309_4	Discuss different laws and regulations related to engineering practices
1EEMC309_5	Correlate role of engineers with different organizations and governance models

Course	Contents:	
Unit 1	Introduction and Basic Information about Indian Constitution Historical Background of the Constituent Assembly, Government of India Act of 1935 and Indian Independence Act of 194,Enforcement of the Constitution, Indian Constitution and its Salient Features, The Preamble of the Constitution, Fundamental Rights, Fundamental Duties, Parliamentary System, Federal System, Centre-State Relations, Emergency Provisions: National Emergency, President Rule, Financial Emergency, and Local Self Government	06 Hrs.
Unit 2	Union Executive and State Executive Powers of Indian Parliament Functions of Rajyasabha, Functions of Loksabha, Powers and Functions of the President, Powers and Functions of the Prime Minister, Lokpal, Lokayukta. State Executives-Powers and Functions of the Governor, Powers and Functions of the Chief Minister, Functions of State Cabinet, Functions of State Legislature	05Hrs.
Unit 3	Introduction and Basic Information about Legal System Sources of Law and the Court Structure: Enacted law -Acts of Parliamentary of primary legislation, Common Law or Case law, Judicial Activism, Contract law, The Independence of the Supreme Court, Appointment of Judges, Judicial Review, Public Interest Litigation, The Court System in India (District Court, District Consumer Forum, Tribunals, High Courts, Supreme Court)	05 Hrs.
Unit 4	Intellectual Property Laws Introduction, Legal Aspects of Patents, Filing of Patent Applications, Rights from Patents, Infringement of Patents, Copyright and its Ownership, Infringement of Copyright, Civil Remedies for Infringement	03 Hrs.
Unit 5	Regulation to Information Regulation to Information Introduction, Right to Information Act, 2005, Information Technology Act, 2000, Electronic Governance, Secure Electronic Records and Digital Signatures, Digital Signature Certificates, Cyber Regulations Appellate Tribunal, Offences, Limitations of the Information Technology Act.	04Hrs

HOD-Electrical

Dean Academics

Director

05 Hrs.

Sant Dnyaneshwar Shikshan Sanstha's

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Business Orga	nizations and	E-Governar	ice
Sole Traders	Partnerchine	Companies	Th

Sole Traders, Partnerships Companies: The Company's Act: Introduction, Formation of a Company, Memorandum of Association, Articles of Association, Prospectus, Shares, Directors, General Meetings and Proceedings, Auditor, Winding up. E-Governance and role of engineers in E-Governance, Need for reformed engineering serving at the Union and State level, Role of I.T. professionals in Judiciary, Problem of Alienation and Secessionism in a few states creating hurdles in Industrial development.

Text Books

Unit 6

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Introduction to the Constitution of India	Dr.Durga Das Basu	Butterworth Wadhwa	Twentieth	2011
2	The Constitution of India	Government of India Ministry of Law And Justice	Government of India Ministry of Law And Justice	First	2007
3	Introduction to the Indian Constitution	Brij Kishore Sharma	PHI Learning Pvt. Ltd.	Eighth	2011
4	The Indian Constitution	MadhavKhosla	Oxford University Press	First	2012

Reference Books:

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	The Constitution of India	PM Bakshi	Universal Law Publishing.	First	2015
2	Law Relating to Intellectual Property Rights	V.K. Ahuja	Lexisnexis	First	2007
3	Our Constitution: An Introduction to India's constitution and constitutional Law,	Subhash C. Kashyap	NBT	First	. 2018
4	Patents, Trademarks, Designs and Geological Indications	BL Wadehra	Universal Law Publishing -	First	1999

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Curriculum T. Y. B. Tech. Semester- VI

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta

An Autonomous Institute

Department of Electrical Engineering

T. Y. B. Tech. Semester- VI

200						Evaluation Scheme					
Code	Course	Teaching Scheme					Theory (Marks)			Practical (Marks)	
		L	т	P	Credits	Scheme	Max	Min	. for	Мах	Min. for Passing
1011000000						ISE -1	10			**	
##OE###	Open Elective- II	3				MSE	30		40		**
		*	(8		3	1SE - II	10		40		**
						ESE	50	20			**
	Electrical Machine					ISE - I	10				
IEEPC310	and Power System	2			3	MSE	30		40		**
	Design		1			ISE - II	10		40		
						ESE	50	20			
	Microcontroller and Its Applications					ISE - I	10				
IEEES311		4		1	4	MSE	30	-	40		-
		~		-	4	ISE - II	10			-	-
						ESE	50	20		-	
IEEPE3**		1		-		ISE - I	10		ET.	-	-
	Professional Elective-]	4			4	MSE	30	-	40	-	-
		1	-	1	1 1	ISE - II	10		40	-	-
						ESE	50	20		-	
	Professional Elective- II				4	ISE - I	10			-	-
IEEPE3**		4				MSE	30	-		8-3	-
		4	-			ISE - II	10	1	40	-	-
		1				ESE	50	20		-	-
IEEPC355	Electrical Machine and Power System		-	2	1	ISE	-		-	25	10
	Design Laboratory			0.000		ESE		POE		50	20
IEEEcass	Microcontrollers and					ISE	-	1	_	25	10
IEEES356	Its Applications Laboratory	-	-	2	1	ESE		PO		50	20
1EEPE3**	Professional Elective- I Laboratory			2	1	ISE	-			25	1
IEEPR360	Mini Broject	-	1-	4	2	ISE					-
	Total	17	1	_		100	500			75	_
	Total Con		_				206	,	**	250	- 1

Course Category	HS	BS	T TO							
Credits	- 415	DO	ES	PC	PE	OE	nn.			
		-	05	04			PR			
Cumulative Sum	05	20	20	20	20	32	-	09	03	02
		20	32	56	09	06	02			

HOD-Electrical

Dean Academics

Executive Director

EE-ST - 031

Sant Dnyaneshwar Shikahan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

> Professional Elective -I

Sr. No.	Course Code	Professional Elective -I	Sr. No.	Laboratory Course Code	Professional Elective - I Laboratory
1	IEEPE312	Control System Design	1	(EEPE357	Control System Design Laboratory
2	IEEPE313	Electrical Drives	2	1EEPE358	Electrical Drives Laboratory
3	1EEPE314	Power Systems Dynamics and Control	3	1EEPE359	Power Systems Dynamics and Control Laboratory

Professional Elective -II

Sr. No.	Course Code	Professional Elective -II
1	1EEPE315	Digital Signal Processing
2	IEEPE316	Electric Vehicles and Smart Grid
3	IEEPE317	Analog and Digital Communication

► [1##OE###] Open Elective – II

Open Elective-II	(Semester-VI)	(n	
Courses Code	Course Name	Department	
1AEOE321	Lighter Than Air Systems	Aeronautical Engineer	
1AEOE322 Airline and Airport Management		Aeronautical Engineerin	
1AEOE323	Flight Scheduling and Operations		
1AUOE310 Vibration based fault diagnosis		Automobile Engineering	
IAUOE311	Engineering Tribology		
ICVOE310	Operation Research	Civil Engineering	
1CV0E311	Economics And Management		
1CSOE311	Internet of Things	Computer Science and	
ICSOE312	Cyber Laws and Ethical Hacking	Engineering	
1EEOE306	Electrical Wiring Harnessing	Electrical Engineering	
1EEOE307	Electrical Economics & Energy Audit		
OFTOE321	Process Modeling and Simulation	Food Engineering	
1MEOE304	Industrial Management and Operation Research		
1MEOE305	Non-Destructive Testing	Mechanical Engineering	
1MEOE306	Computational Fluid Dynamics		

HOD-Electrical

Dean Academics

Executive Director

EE ST -04104

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEOE306, Electrical Wiring Harness
Prerequisite/s	1EEES103
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	mes (COs): al completion of this course, the student will be able to:
1EEOE306_1	
1EEOE306_2	Explain the basics of automotive wiring.
1EEOE306_3	Describe different components used in automotive wiring.
1EEOE306_4	Discuss the advanced installations and interfaces of automotive wiring.
1EEOE306_5	Solve the different problems in automotive wiring.

Course	Contents:	
Unit 1	Electrical Principles and Simple Circuits: High Current/Low Voltage, Ohm's Law, The Power Formula, Combinations, Kirchhoff's Law, Circuit Basics, Wire Resistance Chart, and Example: Installing an Electric Fuel Pump, Hazards Presented by On-Board Computers, Disconnecting the Battery—When? The Right Tools for the Job Required: Tools, Test Light, Digital Multi-Meter Basic Functionality	08 Hrs.
Unit 2	The Fundamentals of Automotive Wiring: Basic Connections, Crimp-Style Connections, Fundamentals of Crimping, Soldering Irons and Guns How to Insulating Connections, Temporary, Mechanical Connectors, Distribution-Type Connectors, Connectors and Plugs Basics for AWG Wire 8 and Larger	08 Hrs.
Unit 3	Ignition Switches, Wiring Harnesses and Controllers: The Ignition Switch, The Wiring Harness, Controllers: The Basics, Power Door Lock Circuits, Power Window Circuits, The Charging System	07 Hrs.
Unit 4	Troubleshooting Understanding Flowcharts, Typical Problems, Circuit Inoperable, Circuit Works, but Blows Fuses: Scenario 1, Circuit Works, but Blows Fuses: Scenario 2, Wiring is Burned Up, Battery is Drained Overnight,	07 Hrs.
Unit 5	Advanced Installations and Interfaces: Interfacing with Power Door Lock and Power Window Circuits, Factory Wiring Diagrams, Interfacing with Power Sunroof and Convertible Top Circuits, Upgrading Headlights to Higher Power Units, Adding an Auxiliary Battery, Adding an Accessory Fuse Panel.	08 Hrs.
Unit 6	Building a Wiring Harness: Harness Basics, Building a Harness from Scratch Harness Construction Project	04 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Automotive wiring and electrical system	Tony Candela	Brook lands Books Ltd.	First	2009
2	Automotive Electrical Performance Project	Tony Candela	Car Tech Books	First	2011
3	Automotive Electrical Equipment	P L Kohli	McGraw Hill	First	2017
4	Automotive Electrical and Electronics	A K Babu	Khanna Publication	Second	2018

Refere	ence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Automotive Electricity and Electronics: Classroom Manual	Barry Hollembeak	Delmar, Cengage Learning	Fifth	2010
2	Automobile Mechanical and Electrical Systems	Tom Denton	BH Publication	First	2011
3	Custom Auto Wiring & Electrical	Strong Matt	Penguin Putnam Inc	First	2010
4	Modern Automotive Technology	James E. Duffy	Goodheart- Willcox	Eighth	2014

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEOE307, Electrical Economics and Energy Audit
Prerequisite/s	1EEES103
Teaching Scheme (Lecture/Practical/Tutorial)	03/00/00
Credits	03
Evaluation Scheme: ISE I/MSE/ISE II/ESE	10/30/10/50

Course Outcom Upon successful	es (COs): completion of this course, the student will be able to:
1EEOE307_1	Explain economics of electrical distribution system.
1EEOE307_2	Describe economics of various types of power generation.
1EEOE307_3	Explain energy audit terms and various instruments for energy audit.
1EEOE307_4	Use of illumination for lighting system.
1EEOE307_5	Illustrate various ways of energy conservation in applications.
1EEOE307_6	Analyze various parameter of energy audit for different systems.

ectrical Distribution System electrical power Supply System, Electricity Billing, Tariff cal Load Management and maximum Demand control, Power	
nent and Benefits, Distribution losses in industrial System, nagement, Analysis of Electrical Power System.	06 Hrs
wer Generation rgy sources and their availability, Net metering concept, Present trends in power generation, Economics of Diesel Generator, plar Power Generation, Economics of wind Energy, Battery as application of Non-Conventional and Renewable Energy Sources	07 Hrs
ation in Applications ergy conservation opportunities, Importance of Star Rating (motor and drive system). b)Efficient Pumping system operation cultural, Industrial etc) c) Heating systems (boiler and steam lation(Fan, Blower, Compressors) and Air Conditioning systems em e) Cogeneration and waste heat recovery systems f) Utility D Sector)	07 Hrs
ment & Audit gy audit- need, Types of energy audit, Energy management h understanding energy costs, Bench marking, Energy latching energy use to requirement, Maximizing system timizing the input energy requirements, Fuel and energy gy audit instruments.	06 Hrs
cic parameters and terms in lightning system, Light source and commended Illumination for various tasks/activities/locations, alating IL luminance – Lighting design for Interiors, General oportunities, Energy efficient lightening controls. Lightning Case onservation in Buildings: Energy Conservation Building Codes Building, LEED rating.	07 Hrs
	ment & Audit gy audit- need, Types of energy audit, Energy management in understanding energy costs, Bench marking, Energy atching energy use to requirement, Maximizing system simizing the input energy requirements, Fuel and energy gy audit instruments. ic parameters and terms in lightning system, Light source and commended Illumination for various tasks/activities/locations, alating IL luminance – Lighting design for Interiors, General portunities, Energy efficient lightening controls. Lightning Case inservation in Buildings: Energy Conservation Building Codes

HOD-Electrical

Dean Academics

Director

Unit 6

Sant Dnyaneshwar Shikshan Sanstha's

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Financia	Management	and	Case	Studies

Investment-need, Appraisal and criteria, Financial analysis techniques-Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis; Financing options, Energy performance contracts and role of ESCOs. Energy audit case studies such as IT sector, Textile, Municipal corporations, Educational Institutes, T and D Sector and Thermal Power stations.

09 Hrs

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Energy Management, Audit and Conservation	Barun Kumar	Vriand Publication	Second	2007
2	Generation and utilization of Electrical Energy	B.R. Gupta	S. Chand Publication	First	1983
3	Energy Auditing made simple	Balasubramanian	Bala Consultancy Services	Second	2013

Sr. No	nce Books:	Author	Publisher	Edition	Year of Edition
1	Success stories of Energy Conservation	Bureau of Energy Efficiency Bureau of Energy Efficiency	Bureau of Energy Efficiency Bureau of Energy Efficiency -		2020
2	Energy Management	W.R. Murphy and Mackay Reed	Elsevier India Private Limited	Second	2009
3	Utilization of electrical energy	S.C. Tripathi	Tata McGraw Hill	First	1991

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPC310, Electrical Machines and Power System Design
Prerequisite/s	1EEPC209, 1EEPC210, 1EEPC304
Teaching Scheme: Lecture/Tutorial/Practical	02/01/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcom Upon successful	es (COs): completion of this course, the student will be able to:
1EEPC310 1	Identify the various materials use for Electrical Machines.
1EEPC310_2	Create the various parts of the single and three phase Transformers.
1EEPC310_3	Develop the various parts of the DC Machines and Induction Motors
1EEPC310_4	Discuss the various cooling methods use for the Electrical Machines
1EEPC310_5	Draft the Regulator, Starters and Control panels for the Particular System.
1EEPC310_6	Layout the various parts of Substation.

	Basic Design concept :	
Unit 1	Limitations of design, modern trends in design of electrical machines, Electrical properties of conducting, magnetic and Insulating Materials and its Classifications, Reasons for generation of heat in electrical machines. Concept of load and no load losses, Heating and cooling of electrical machines, Specific magnetic and electric loading and their choice, Effect of type and quality of insulation on limits of allowed temperature rise and life of machine, Output coefficient of DC and AC machine, Factor affecting size of machines	05 Hrs.
Unit 2	Design of Transformers Core design Winding design ,Window area ,Problem design of single phase transformer for 230V 50hz supply to deliver (3 to 5) amp at (12 to 50) volt Design Parameter of Three Phase Transformer ,Power and distribution transformer from design point of view, Specifications-Rating and performance expectation, Output equation. Choice of Specific magnetic and electric loading, Core losses and copper losses, Design of core, winding and main dimensions of frame, Electrical parameter -resistance, reactance, Magnetizing current, Design criteria for tank, Procedural steps for design of transformer	05 Hrs.
Unit 3	Design of DC Machines Introduction & Applications, classification, Constructional Details, Stator, Armature, Commutator, Brush Gear, Design output Equation, Interdependence of specific &Electrical loadings, Selection of no of poles, Core Length, Armature diameter, Length of air gap, No of Armature coils, No of Armature Slots, Cross Section of Armature Conductors, Insulation of armature winding, Slots Dimensions, Poles Design (Area of poles, Height of Poles), length ofInter poles, Losses & Efficiency (Rotational Losses, Cu. Losses Stray load losses, Efficiency).Design of commutator and brush	05 Hrs.
Unit 4	Design of Induction Motor Single phase induction motor - Design considerations and specification, Material of core, conductor and insulation, Design of core diameter and axial length, Choice of air gap, number of stator slots, rotor slots. Design of main winding, Maximum torque, Reactance, Procedural steps for designing capacitor stark	05 Hrs.

HOD-Electrical

Dean Academics

rector Exec

TY CC - 074/41

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

	induction run motor, Sample examples Three phase induction motor - Basic consideration for design, Frame, Rating, Duty and rating. ,Temperature rise, Output equation, choice of specific electric loading, Relation between L and D for best power factor, Procedural steps for design of a 3 Phase Squirrel Cage Induction	
Unit 5	Design Parameters of Starters, Field Regulator and Control Panel Design parameters of choke, Design parameters of A.C. and D.C. motor starters, Design parameters of Field regulator, Design of general purpose control panels	04 Hrs.
Unit 6	Design of Substations CT/ VT sizing calculations, lighting system design calculations, Grounding system design calculations. Lightning (shielding) protection layout and details, Indoor/outdoor lighting layout details, Small power distribution layout details, Floor opening – switchgear control building layout details.	04 Hrs.

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	A Course in Electrical Machine Design	A.K. Sawhney,	DhanpatRai& sons New Delhi	Sixth	2006
2	Theory and Performance and Design of A.C. Machines	M.G. Say,	ELBS London	Third	1992
3	Principles of Electrical Machine Design,	R. K. Agarwal	S. K. Katariya and sons.	Fifth	2014
4	Substation Design and Equipment	Satnam P.S.	Dhanpat Rai & Sons,	Third	2012

Reference Books:

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Computer Aided Electrical Drawing	M. Yogesh, B. S. Nagaraja, N. Nandan	PHI Learning	First	2014
2	Electrical Machine Design Data	A Shanmugasundaram, G. Gangadharan, R. Palani,	Wiely Eastern Ltd., New Delhi	Third	2003
3	Computer Aided Design for Electrical Machines	K.M. Vishnu Murthy	B.S. Publications.	First	2008
4	Design for Electrical Machines	V.N.Mittle	Standard Publisher, New Delhi	Third	1992

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEES311, Microcontroller and Its Applications
Prerequisite/s	1EEPC211
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEES311_1	Outline architecture and basic concepts in microcontroller.
1EEES311_2	Interface external peripherals with 8051 microcontroller to run various applications
1EEES311_3	Write assembly language program for given application of 8051.
1EEES311_4	Choose an advanced and efficient microcontroller for a given application.
1EEES311_5	Design circuit for a microcontroller based application.
1EEES311_6	Develop an algorithm for advanced microcontrollers to execute a given application.

Course	Contents	
Unit 1	Microcontroller Architecture Introduction to microcontroller, comparison of microprocessor and microcontroller, features of microcontroller, block diagram, architecture of 8051, pin configuration, 40 pin dip of 8051, I/O ports, serial port, timer / counter, interrupt structure, Special Function Registers (SFRs), code memory and data memory, stack and stack pointer.	12 Hrs.
Unit 2	Assembly language programming- I Addressing modes and instruction set – assembler directives, data transfer, logical, arithmetic, jump and call, stack and machine cycle control instructions, Simple assembly language programming examples- delay generation, square wave, shift block, numbers sorting, and Fibonacci series.	10 Hrs.
Unit 3	Assembly language programming- II I/O port programming, serial communication programming, timer/counter programming, interrupts and ISRs programming	06 Hrs.
Unit 4	Microcontroller Interfacing Applications Switch, push button, Relay, ADC 0808, DAC 0809, LCD, 7-Segment LED display, Automatic power factor controller, DC Motor Interfacing, Stepper Motor Interfacing, Weighing Balance, Temperature Controller.	09 Hrs.
Unit 5	Advanced Microcontrollers- I ARM Controller The RISC design philosophy, ARM design philosophy, embedded system hardware- AMBA Bus protocol, embedded system software- applications. PIC Microcontrollers PIC16 Microcontrollers, block diagram, PIC16 MCU configuration, peripherals, serial interfaces	09 Hrs.
Unit 6	Advanced Microcontrollers-II Arduino Introduction to Arduino Pin configuration and architecture. Device and platform features. Concept of digital and analog ports. Familiarizing with the Arduino Interfacing Board. Introduction to Embedded C and Arduino platform	10 Hrs.

HOD-Electrical

Dean Academics

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

16-bit Microcontrollers

XC164 On-chip system architecture, block diagram, CPU, Program Management Unit (PMU), Data Management Unit (DMU), Interrupt and PEC system structure, block diagram, External Bus Controllers (EBC)

Lex	Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Microcontroller: Theory and Applications	Ajay Deshmukh	Tata McGraw-Hill	Fifth	2006
02	8051 Microcontroller: Hardware, Software and Applications	V Udayshankara, M S MallikarjunaSwamy	McGraw-Hill Education India	Eighth	2014
03	8051 Microcontroller- Internals, Instructions, Programming & Interfacing	SubrataGhoshal	Pearson Publication	First	2014
04	8051 Microcontroller and Embedded Systems	Sampath K Vyankatesh	SK Kataria& Sons	First	2013

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	8051 Microcontroller and Embedded Systems: Using Assembly and C	M. A. Mazidi	Pearson Publication	Second	2008
02	Microcontrollers: Principles & Applications	Ajit Pal	PHI Publications	Second	2008
03	The 8051 Microcontroller	Kenneth Ayala	Cengage Learning	Third	2007
04	C And The 8051	Thomas W Schultz	Wood Island Prints	Fourth	2008

HOD-Electrical

Dean Academics

Director

ector Executi

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE312, Control System Design
Prerequisite/s	1EEPC208, 1EEPC303
Teaching Scheme: Lecture/Tutorial /Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEPE312_1	Describe the type of controllers and their effects on system performance
1EEPE312_2	Compute the z- transform and the relation between z-domain & s-domain for a digital control system.
1EEPE312_3	Apply the different approaches for analyzing nonlinear control systems.
1EEPE312_4	Design the compensators in time and frequency domain
1EEPE312_5	Develop a controller in state space using various techniques

Course	Contents:	
Unit 1	Introduction to Controllers Different types of controllers, Effects of controllers on system performance, tuning of PID controller using Ziegler-Nichols method, and modifications of PID control scheme.	08 Hrs
Unit 2	Design of Compensator in Time Domain Review of Root Locus, concept of Lead, Lag, Lag- Lead Compensator, Design of Lead compensator, Lag compensator, and Lag- Lead compensator based on Root Locus approach.	10 Hrs
Unit 3	Design of Compensator in Frequency Domain Review of Bode Plot, Design of Lead compensator, Lag compensator, Lag-Lead compensator based on frequency domain approach	10 Hrs
Unit 4	Design of Control Systems in State Space Pole placement technique: Introduction, Controller design, State Feedback Law, Pole placement technique by Transformation Method, Direct Substitution Method and Ackermann's formula. State Observers: Introduction, Full Order State Observer, Transformation Approach, Direct Substitution Approach and Ackermann's formula to obtain observer gain matrix	12 Hrs
Unit 5	Digital Control Systems Introduction, Block diagram of digital control systems, Difference equation, Review of Z-transform, Z-transform Analysis of Sampled Data Control System, Relation between Z domain and S domain.	08 Hrs
Unit 6	Nonlinear Control Systems Introduction, difference between linear and nonlinear systems, common physical nonlinearities, Approaches for analysis of non-linear systems: Describing Function Analysis-Dead zone and Saturation nonlinearity, Phase Plane Analysis-Concept of phase plane, Phase trajectory, Singular Points.	08Hr

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Text Bo	Text Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
01	Modern Control Engineering	K. Ogata	Prentice Hall India	Fifth	2010	
02	Control System Engineering	Norman Nise	Wiley Publication	Sixth	2013	
03	Feedback Control Systems	C.L. Phillips, R.D. Harbor,	Prentice Hall India	Fourth	1999	
04	Introduction to Control Engineering: Model, Analysis & Design	A. K. Mandal	New Age International Pulishers	First	2006	
05	Advanced Control Theory	Nagoor Kani	RBA Publication	Second	-	

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Automatic Control System	Kuo&Golnaraghi	Wiley-India	Ninth	2013
02	Control System Engineering	I.J. Nagrath M. Gopal	New Age International Publication	Fifth	2009
03	Control Systems	N. C. Jagan	B. S. Publications	Second	2008
04	Discrete Time Control Systems	K. Ogata	Prentice Hall International Inc.	Second	1995

HOD-Electrical

Dean Academics

Director

Executive Director

TY 00 -02/44

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE313, Electrical Drives
Prerequisite/s	1EEPC210, 1EEPC303, 1EEPC304, 1EEPC305
Teaching Scheme: Lecture/Tutorial /Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outcon Upon successfu	nes (COs): I completion of this course, the student will be able to:
1EEPE313_1	Discuss the concepts in electrical drives with respect to steady state and dynamic conditions, nature of load and parts of drives.
1EEPE313_2	Apply the knowledge of power electronics converters, electrical machines, and control systems for given applications of AC and DC drives.
1EEPE313_3	Solve numerical to find different parameters related to electrical drives.
1EEPE313_4	Sketch performance characteristics of rectifier and chopper fed DC Drives.
1EEPE313_5	Draw performance characteristics of inverter and Cyclo-converter fed AC Drives.
1EEPE313_6	Apply the knowledge of electrical drives for various industrial applications.

Course	Contents	
Unit 1	Electrical Drives: Fundamentals and Dynamics Drives, Concept of Electrical drive, Classification of Electrical drives, Block Diagram of Electrical Drive, Parts of Electrical drive, Nature of loads and their characteristics, Motor load systems, Dynamic conditions in Electrical drives, Stability of electrical drives	08 Hrs.
Unit 2	DC Drives: AC to DC Converter Fed DC Drives Introduction, review of dc motors with respect to classification, speed control and electric braking, Single phase half and full controlled converter fed dc motor drives, dc series motor drives, Introduction to four quadrant operation and single phase dual converter fed dc motor drive, Three phase half and full converter fed dc motor drive, four quadrant operation and three phase dual converter fed dc motor drive. Closed Loop Control of Converter fed dc drives.	11 Hrs.
Unit 3	DC Drives: Chopper Fed DC Drives Introduction, review of chopper operation with respect to its principle, configuration and classification. One, Two and Four quadrant Chopper Fed Separately Excited dc motors drive, Chopper Fed Series dc motors drive. Closed Loop Control of Chopper fed dc drives.	09 Hrs.
Unit 4	AC Drives: Stator Side Control Induction Motor Drives Introduction, review of types of Three phase induction motors with respect to methods of speed control and torque-speed characteristic, Three phase AC voltage controller fed induction motor drive, Variable Frequency Characteristics, Block Diagram of Variable Frequency Speed Control, V/f control, Voltage Source Inverter (VSI) fed induction motor drive, Closed Loop Control of VSI fed induction motor drive, Current Source Inverter (CSI) fed induction motor drive, Closed Loop Control of CSI fed induction motor drive, comparison of VSI and CSI drives.	12 Hrs.

HOD-Electrical

Dean Academics

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 5	AC Drives: Rotor Side Control Induction Motor Drives Introduction, Conventional Rotor Resistance Control, Rotor Resistance Control using power converters, Concept of Slip Power Recovery, Slip Power Recovery Schemes, Static Kramer drive, Static Scherbius drive. Special Purpose Electric Motor Drives: Introduction to Synchronous Motor Drives, SRM Drives, BLDC Motor Drives	10 Hrs.
Unit 6	Advanced Topic in Electrical Drives Battery powered drives for vehicles, Configurations of EV, Performance of EV, Concept of hybrid electric drive trains, architecture of HEV drive trains, design the converter for given application. (Electrical Vehicle, electric drive trains)	06 Hrs.

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Fundamentals of Electrical Drives	G. K. Dubey	CRC Press	Second	2002
02	Electric Drives	N. K. De, P. K. Sen	PHI, Delhi	Third	2007
03	Electric Drives: Concepts & Applications	Vedam Subrahmanyam	Tata Mc-Graw Hill	Second	2011
04	Power Semiconductor Drives	S. Sivanagaraju, M. B. Reddy, A. M. Prasad	PHI, Delhi	Second	2009
05	Modern Electric, Hybrid Electric and Fuel Cell Vehicles	Meherdad Ehsani, Yimin Gao, Sabestien E Gay, Ali Emadi	CRC Press	First	2016

Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Power Electronics: Converters, Applications & Design	Ned Mohan	Wiley Publications	Third	2003
02	Power Electronics & Variable frequency drives: Technology & applications	Dr. B. K. Bose	Wiley Publications	First	1996
03	Principles of Electric Machines & Power Electronics	P. C. Sen	Wiley Publications	Second	2013
04	Electric and Hybrid Vehicles	Iqbal Husain	CRC Press	Second	2010
05	Power Electronics: Circuits, Devices, and Applications	M. H. Rashid	Prentice Hall	Third	2003

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE314, Power System Dynamics and Control
Prerequisite/s	1EEPC209, 1EEPC308
Teaching Scheme: Lecture/Tutorial /Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successf	mes (COs): al completion of this course, the student will be able to:
1EEPE314_1	Describe fundamental concepts in power system stability and control.
1EEPE314_2	Explain appropriate method to improve power system stability.
1EEPE314_3	Model power system components to study the system performance.
1EEPE314_4	Solve numerical on dynamics of synchronous machine, power system control and economical load dispatch.
1EEPE314_5	Derive the equations for optimal operation of generation dispatching schemes for thermal and hydro units.
1EEPE314_6	Examine stability of power system by numerical and graphical solution technique under different contingencies.

Course	Contents:	
Unit 1	Introduction to Power System Stability & Control Introduction to power system stability, classification power system stability, relationship between reliability, security, and stability, dynamics of synchronous machine (swing equation), power angle equation, node elimination technique.	06 Hrs.
Unit 2	Power System Stability Simple systems- machine connected to infinite bus, two machine systems, steady state stability, transient stability, factors affecting transient stability, equal area criteria- sudden change in mechanical input, effect of clearing time on stability, sudden loss of one of parallel lines, sudden short circuit on one of parallel lines, numerical solution of swing equation by point by point method.	12 Hrs.
Unit 3	Methods of Improving Stability Introduction, transient stability enhancements:- high speed fault clearing, reduction of transmission system reactance, regulated shunt compensation, dynamic braking, reactor switching, controlled system separation & load shedding, high speed excitation & control, discontinuous excitation control, small signal stability enhancement-power system stabilizers, supplementary control of SVC, methods of improving voltage stability.	08 Hrs.
Unit 4	Power System Control Introduction, load frequency control (single area case) – turbine speed governing system, model of speed governing system, turbine model, generator load model, complete block diagram representation of load frequency control of an isolated power system, steady state analysis, dynamic response, control area concept, PI-LFC, load frequency control and economic dispatch control, automatic voltage control.	10 Hrs.

HOD-Electrical

Dean Academics

ector Executive

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Unit 5	Economic Operation and Security of Power Systems Introduction, generator operating cost, performance curves, load forecasting, optimal unit commitment- economic load dispatch neglecting losses, economic load dispatch including generator limits, economic load dispatch including losses, Challenges to secure operation of today's power systems, comprehensive approach to system security, system state classification, security analysis, contingency analysis, sensitivity factors	12 Hrs.
Unit 6	Major grid blackouts: analysis, classification, and prevention Introduction, Description of Some Previous Blackouts, Analysis of Blackouts, Economical and Social Effects, Recommendations for Preventing Blackouts, On Some Defense and Restoration Actions, Survivability/vulnerability of Electric Power Systems, Conclusions. Restoration processes after blackouts: Introduction, Overview of The Restoration Process, Black-Start-Up Capabilities of Thermal Power Plant: Modeling and Computer Simulations, Description of Computer Simulators, Concluding Remarks	08 Hrs.

Text	t Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Modern Power System Analysis	D.P.Kothari, I.J. Nagrath	Mc-Graw Hill Publications	Fourth	2011
02	Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control	Mircea Eremia (Editor), Mohammad Shahidehpour (Editor)	Wiley-IEEE Press	First	2013
03	Power System Stability and Control	Prabha Kundur	TMH Publications.	Second	1994
04	Power System Dynamics	KR Padiyar	BS Publications	Second	2008
05	Power System Analysis	Hadi Saadat	Tata Mc-Graw Hill	First	2002
06	Power System Operation and Control	Dr. K Uma Rao	Wiley India Publication	First	2012

Ref	erence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Power System Analysis	Grainger John J and W D Stevenson	McGraw Hill	First	1994
02	Power System Analysis and Design	J. Duncan Glover and Mulukuta S. Sarma	Prentice Hall	Third	2002
03	Power Generation, Operation And Control	Allen J Wood, Wollenberg	Wiley India	Second	1996
04	Power System Analysis	A.R. Bergen and Vijay	Pearson	Second	2009

HOD-Electrical

Dean Academics

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE315, Digital Signal Processing
Prerequisite/s	1EEPC208, 1EEPC211
Teaching Scheme: Lecture/Tutorial/ Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successf	mes (COs): iul completion of this course, the student will be able to:
1EEPE315 1 Compute DFT and IDFT of various signals using its properties	
1EEPE315_2	Describe modern signal processing tools
1EEPE315_3	Apply the knowledge of DFT to find the computational complexity and convolution for long duration sequences.
1EEPE315_4	Use fast and efficient algorithms for computing DFT, IDFT and FFT of a given sequence
1EEPE315_5	Construct the structures of FIR & IIR filters in different forms.

	Discrete-time Signals and Systems	
Unit 1	Introduction to DSP system, Representation of Discrete time signals, Classification of Discrete time signals, Operations on signals, Classification of Discrete time systems, Sampling and aliasing, Advantages and limitations of DSP, Application of DSP	06 Hrs.
Unit 2	The Discrete Fourier Transform Introduction, DFT, Linear convolution, Circular convolution, Methods to evaluate circular convolution, Comparison between Circular and Linear convolution algorithm, Filtering long duration sequence- overlap-save and overlap add-method	10 Hrs.
Unit 3	The Fast Fourier Transform Introduction to FFT, Twiddle factor, Radix-2 DIT- FFT algorithm for the computation of DFT, IDFT using FFT algorithm – decimation-in-time and decimation-in-frequency algorithms, Circular convolution using FFT.	10 Hrs.
Unit 4	IIR Filter Design Structure for IIR Systems: Direct form, Cascade form, Parallel form structures. IIR filter design: Characteristics of commonly used analog filters – Butterworth and Chebyshev filters, Frequency transformations in analog domain, Design of IIR Filters using impulse invariance technique and Bilinear transformation.	10 Hrs.
Unit 5	FIR Filter Design Fourier series method of designing FIR filters, Design of FIR filters using window - Rectangular, Hanning, Hamming, Realization of FIR filters.	10 Hrs.
Unit 6	Modern Trends in Digital Signal Processing Digital Signal Processors- Introduction, Architecture of TMS320C50, Multirate Signal Processing and introduction to Wavelet Transform	10 Hrs.

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Digital Signal Processing Principles, Algorithms and Applications	John G, Proakis	Pearson Education	Second	2008
2	Digital Signal Processing	SanjeetMitra	TMH Pub.	First	2006
3	Digital Signal Processing	Dr P Ramesh Babu	Scitech Publications	Third	2011
4	Understanding Digital Signal Processing	Richard G. Lyons.	Prentice-Hall	Third	2010

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Discrete Time Signal Processing	Oppenheim and R. W. Schafer	PHI Pub.	First	2005
2	Digital Signal Processors	Venkatramani, Bhaskar	TMH Pub.	First	2006
3	Wavelet Transform	Raghuveer Rao, Bopardikar,	Pearson Education	First	2000
4	Digital Signal Processing	Alan V. Oppenheim, Ronald W. Schafer	Prentice-Hall	second	2011

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T. Y. B. Tech. SemVI
Course Code and Course Title	1EEPE316, Electric Vehicles and Smart Grid
Prerequisite/s	1EEPC210, 1EEPC303, 1EEPC304, 1EEPC305
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successfu	mes (COs): al completion of this course, the student will be able to:
1EEPE316_1	Explain vehicle mechanics & impact on environment of traditional transportation system. (K ²)
1EEPE316_2	Describe suitable energy storage & regeneration system for Electric Vehicles (K ²)
1EEPE316_3	Discuss implementation of chagrining facility for electric vehicles(K2)
1EEPE316_4	Select appropriate propulsion system for Electric Vehicles (K ³)
1EEPE316_5	Identify impact of electric vehicles on power grid (K ³)

Course	Contents:	
Unit 1	Environmental Impact and Vehicle Fundamentals Petroleum resources, induced cost, air pollution, global warming, , importance of different transportation development, history of electric and hybrid electric vehicles, general description of vehicle movement vehicle resistance, power train tractive effort and vehicle speed, vehicle performance, operating fuel economy, braking performance	08Hrs.
Unit 2	Electric Propulsion Systems DC Motor Drives- Principle of operation and performance, combined armature and voltage control, chopper control of DC motor drives, Induction motor drive-Basic operating principle, Volt/hertz control, power electronic control, field oriented control, BLDC motor drive-Basic principle, Control of BLDC drive, SRM drive-SRM drive controller, Modes of operation	10 Hrs.
Unit 3	Energy Storage and Regeneration Electrochemical batteries and its types- Electrochemical reaction, thermodynamic voltage, specific energy, power, efficiency, applications of different battery technologies in EV and HEV, Battery Management System Ultra capacitors- Features, Basic operating principle, Performance, applications of different ultra capacitor technologies in EV and HEV Ultra high speed flywheels- operating principle, power capacity, applications of different flywheel technologies in EV and HEV Fundamentals of regenerative braking- Energy consumption in braking, braking power and energy on front and rear wheels, brake system for EV and HEV	10 Hrs.
Unit 4	Electric Vehicles (EV) Configurations of EV, Performance of EV, Traction motor characteristics, tractive effort and transmission requirement, vehicle performance, tractive effort in normal driving, energy consumption, Concept of hybrid electric drive trains, architecture of HEV drive trains, series hybrid, parallel hybrid- Torque coupling	10 Hrs.

HOD-Electrical

Dean Academics

rector 1

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

	drive trains, speed coupling drive trains, speed and torque coupling drive trains.	
Unit 5	Electric Vehicles in Smart Grid Identification of EV demand, EV penetration level for different scenarios, classification based on penetration level, EV impacts on system demand Impact of charging strategies, Impact of EV charging on power grid, effect of EV charging on generation and load profile	10 Hrs.
Unit 6	EV Charging Facility Planning EV charging options and infrastructure, Smart charging technologies, Energy generation scheduling, different power sources, fluctuant electricity, centralized charging schemes, decentralized charging schemes, energy storage integration into Micro grid, Design of V2G Aggregator.	08 Hrs

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Modern Electric, Hybrid Electric and fuel cell vehicles	MehrdadEhsani, Yimin Gao	CRC Press	First	2005
2	Electric and Hybrid Vehicles	Iqbal Husain	CRC Press	Second	2010
3	Electric Vehicle Technology Explained	James Larminie, John Lowry	Wiley	First	2003
4	Smart Grid: Technology and Applications	JanakaEkanayake, Kithsiri Liyanage, et.al.	Wiley	First	2012

Reference Books

Sr. No.	Title	Author	Publisher	Edition	Year of Edition
1	Fundamentals of Electrical Drives	G. K. Dubey	CRC Press	First	2002
2	How Your Car Works: Your Guide to the Components & Systems of Modern Cars, Including Hybrid & Electric Vehicles	Arvid Linde	Rac Handbook	Second	2011
3	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi, M. Abul Masrur and David Wenzhong Gao	Willey Publications	Second	2011
4.	Smart Grid: Fundamentals of Design and Analysis	James Momoh	A John Wiley & Sons, Inc. Publication	First	2012

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

T.Y. B. Tech, SemVI
1EEPE317, Analog and Digital Communication
1EEES108, 1EEPC203, 1EEPC211
04/00/00
04
10/30/10/50

Course Outcon Upon successfu	mes (COs): al completion of this course, the student will be able to:
1EEPE317_1	Explain the types and differences between analog and digital modulation techniques.
1EEPE317_2	Apply different analog and digital modulation schemes for signal transmission
1EEPE317_3	Select the appropriate method of error detection and error correction for data transmission
1EEPE317_4	Understand various pulse modulation techniques for different pulse communication system
1EEPE317_5	Discuss various error detection and correction codes for digital signal transmission.
1EEPE317_6	Analyze the performance of modern communication systems such as 2G, 3G and 4G cellular wireless communication systems.

Course	Contents:	
Unit 1	Introduction to Analog Communication system Noise: Source of Noise – External Noise- Internal Noise- Noise Calculation. Introduction to Communication Systems: Modulation – Types – Need for Modulation. Theory of Amplitude Modulation – Evolution and Description of SSB Techniques – Theory of Frequency and Phase Modulation – Comparison of various Analog communication (AM – FM – PM).	10 Hrs.
Unit 2	Digital communication system Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Keying (MSK) –Phase Shift Keying (PSK) – BPSK – QPSK – 8 PSK – 16 PSK – Quadrature Amplitude Modulation (QAM) – 8 QAM – 16 QAM – Bandwidth Efficiency – Comparison of various Digital communication system (ASK – FSK – PSK – QAM)	10 Hrs.
Unit 3	Data Communication Data Communication: History of Data Communication – Standards Organizations for Data Communication- Data Communication Circuits – Data Communication Codes – Error Detection and Correction Techniques – Data communication Hardware – serial and parallel interfaces.	08 Hrs.
Unit 4	Pulse Communication Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse code Modulation (PCM) – Comparison of various Pulse Communication System (PAM – PTM – PCM).	08 Hrs.
Unit 5	Source And Error Control Coding Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, channel coding theorem, Error Control Coding, linear block codes, cyclic codes, convolution codes, viterbi decoding algorithm.(Numerical Expected)	10 Hrs.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 6	Multi-User Radio Communication Advanced Mobile Phone System (AMPS) – Global System for Mobile Communications (GSM) – Code division multiple access (CDMA) – Cellular Concept and Frequency Reuse – Channel Assignment and Hand – Overview of Multiple Access Schemes – Satellite Communication – Bluetooth.	10 Hrs.
--------	---	---------

Text Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Advanced Electronic Communication Systems	Wayne Tomasi	Pearson Education	Sixth	2009
2	Modern Analog and Digital Communication Systems	B. P.Lathi	Oxford University Press	Third	2007
3	Wireless Communications: Principles and Practice	Rappaport T.S	Pearson Education	Second	2007
4	Digital Communication Fundamentals and Applications	B.Sklar	Pearson Education	Second	2007

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Communication Systems	Simon Haykin	John Wiley & Sons	Fourth	2004
2	Principles of Communication	H.Taub, D L Schilling and G Saha	Pearson Education	Third	2007
3	Analog and Digital Communication System	Martin S.Roden	Prentice Hall of India	Third	2002
4	An Introduction to Analog and Digital Communications	Simon Haykin , Michael Moher	John Wiley & Sons, Inc	Second	2006

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI	
Course Code and Course Title	1EEPC355, Electrical Machine and Power System Design Laboratory.	
Prerequisite/s	1EEPC255, 1EEPC352, 1EEPC354	
Teaching Scheme: Lecture/Tutorial/Lab.	00/00/02	
Credits	01	
Evaluation Scheme: ISE /ESE	25/ 50	

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEPC355_1	Identify the material to be used for the various parts of Electrical Machines
1EEPC355_2	Design layout for AC Machine, DC Machine & Transformer Using AutoCAD
1EEPC355_3	Develop AC & DC Winding by using AutoCAD
1EEPC355_4	Develop layout Substation party by using AutoCAD
1EEPC355_5	Prepare Industrial Visit Report.

List of Experiments:

Expt. No.	Title of Experiment
1	Identify the Various Parts of Electrical Machines
2	Introduction to AutoCAD software for Electrical Machines Design
3	Details and layout of DC Wave winding with design report using Auto-Cad
4	Details and layout of DC Lap winding with design report using Auto-Cad
5	Details and layout of AC winding with design report using AutoCAD
6	Design of HV and LV Windings OF Transformer by using AutoCAD
7	Details and Complete layout on core type Three Phase Transformer with design report
8	Complete layout on core type Three Phase Transformer using AutoCAD
9	Complete layout on Start-delta Starter by using AutoCAD
10	Details and Complete Layout of Squirrel cage Induction Motor with design report
11	Details and Complete Layout of Slip-Ring Induction Motor with design report
12	Draw Single Line diagram of substation & shows the position of CT, PT, Isolating Switches, Lightning arrestor, CB.
13	Draw Earthling diagram of Power Substation using AutoCAD
14	Report based on Industrial visit to a manufacturing unit. (Transformer or Induction motor

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

T.Y. B. Tech, SemVI
1EEES356, Microcontroller and Its Applications Laboratory
1EEPC256
00/00/02
01
25/50

Course Outco Upon successf	omes (COs): iul completion of this course, the student will be able to:
1EEES356_1 Develop programming logic by writing instructions sequentially	
1EEES356_2	Execute a given program in Kiel software environment.
1EEES356_3	Demonstrate peripheral interfacing applications with microcontroller
1EEES356_4	
1EEES356_5	

List of Experiments

Expt. No.	Title of Experiment
1	Data transfer between IO ports
2	Assembly language programming of arithmetic and logic operations
3	Push button / key interfacing for LED f lashing / running
4	7 segment display interfacing with microcontroller
5	LCD interfacing to microcontroller
6	ADC interfacing to microcontroller
7	DAC interfacing to microcontroller
8	RTC interfacing to microcontroller
9	ON – OFF temperature controller
10	Design of automatic power factor controller
11	DC Motor interfacing to microcontroller
12	Stepper Motor interfacing to microcontroller

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE357, Control System Design Laboratory
Prerequisite/s	1EEPC351, 1EEES257
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/00

Course Outco Upon successfu	mes (COs) Il completion of this course, the student will be able to:
1EEPE357_1	Obtain the responses of lead compensators and lag compensators.
1EEPE357_2	Determine controller and observer gain in state space by using MATLAB.
1EEPE357_3	Demonstrate the effect of controllers on system performance.
1EEPE357_4	Communicate effectively about laboratory work orally and through writing journals.
1EEPE357_5	Practice professional and ethical behavior to carry forward in their life.

List of Experiment:

Expt. No.	Title of Experiment
1	Effect of controllers on system performance.
2	Design of lead compensator using Root Locus Method.
3	Design of lag compensator using Root locus Method.
4	Design of lead compensator using Bode Plot Method.
5	Design of lag compensator using Bode Plot Method.
6	Design of pole placement by using MATLAB.
7	Design of observer by using MATLAB.
8	Design of PID Controller for speed control of DC Motor System.
9	Simulation kit to study effect of compensation.
10	Nonlinear system simulation using Mat labSimulink.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Laboratory Course Code and Course Title	1EEPE358, Electrical Drives Laboratory
Prerequisite/s	1EEPC255, 1EEPC351, 1EEPC352, 1EEPC353
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE/ESE	25/00

Course Outcor Upon successfu	nes (COs): I completion of this course, the student will be able to:
1EEPE358_1	Apply the knowledge of power electronics converter to control DC Drives.
1EEPE358_2	Implement ASD and VSD to control speed & frequency of Induction Motor Drives.
1EEPE358_3	Perform individually and in a team to learn the practices in Electrical Drives & Control Library
1EEPE358_4	Simulate the simple models of drive using MATLAB Simulink browser.
1EEPE358_5	Follow professional ethics and responsibilities during conduct of laboratory practice

List of Experiment:

Expt. No.	Title of Experiment
1	Four Quadrant operation of Electrical Drives
2	DC Drive Trainer to observe modes of operation and dynamic braking of DC Machine.
3	1-phase half converter to fed DC Drives
4	1-phase full converter to fed DC Drives
5	3-phase full converter to fed DC Drives and draw the characteristics.
6	Chopper to control DC series motor Drive
7	Chopper Controller using MOSFET/IGBT to control DC motor
8	3-Phase IM Controller to control speed of IM using (V/f) scheme.
9	3- Phase IM Speed Control by SPR scheme
10	One Quadrant Chopper fed DC drives- MATLAB Simulation
11	Two quadrant Rectifier fed DC drive- MATLAB Simulation
12	Six step VSI induction motor drive- MATLAB Simulation

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPE359, Power System Dynamics & Control Laboratory
Prerequisite/s	1EEPC351, 1EEPC354, 1EEES257
Teaching Scheme: Lecture/Tutorial /Practical	00/00/02
Credits	01
Evaluation Scheme: ISE/ESE	25/00
THE STATE OF THE S	20,00

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEPE359_1	Evaluate the parameters for dynamic operation and optimal power flow operation in power system
1EEPE359_2	Sketch the response of synchronous machine, ALFC and AVR under disturbances.
1EEPE359_3	Use modern tools/software (like MATLAB/POWER WORLD SIMULATOR/ ETAP) to find response of synchronous machine, ALFC and AVR under disturbances
1EEPE359_4	Communicate effectively about laboratory work both orally and in writing journals
1EEPE359_5	Practice professional and ethical behavior to carry forward in their life

List of Experiment

Expt. No.	Name of the Experiment Following Experiments are performed on MATLAB/Simulink/ETAP
1	Dynamics of synchronous machine.
2	Swing Equation in Simulink
3	Dynamics of synchronous machine using Point-by-Point Method.
4	The power angle curve of SMIB system under transient instabilities.
5	The natural response of the rotor angle and frequency of SMIB system under small disturbance.
6	Equal area criteria to sudden change in power.
7	Step response of automatic load frequency control (ALFC) system of single area case.
8	The step response of the automatic voltage regulator (AVR) of a generator.
9	The optimal dispatch and the total cost in Rs/h of three thermal plants by neglecting line losses and generator limits.
10	Step response of automatic load frequency control (ALFC) system of two area case
11	Study of role of load dispatch center.
12	Design working prototype model of any one of method of improving stability in a group.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Class	T.Y. B. Tech, SemVI
Course Code and Course Title	1EEPR360, Mini Project
Prerequisite/s	1EEPC252, 1EEPC257,1EEES356
Teaching Scheme: Lecture/Tutorial/Practical	00/00/04
Credits	02
Evaluation Scheme: ISE / ESE	75/00

Course Outco Upon successf	mes (COs): ul completion of this course, the student will be able to:
1EEPR360_1	Explain the theme of mini project.
1EEPR360_2	Illustrate the facts and ideas by giving description with stating ideas.
1EEPR360_3	Examine and break information into parts by identifying motives
1EEPR360_4	Evaluate the defend theme by making judgments about information, validity of ideas, or quality of work based on a set of criteria.
1EEPR360_5	Build by combining elements in a new pattern or proposing alternative solutions by creating something innovative.

Course Contents:

- Students should form group of three to four students in respective class.
- Selection of mini project must be based on resent technology, innovative ideas, useful for society, etc.
- Mini project should be a working model based the level of their knowledge, understanding and practices.
- Continuous evaluation of mini project will be through presentation, demonstration and report writing.
- Assessment of Mini project will be done by a panel of three examiners appointed by DAC.
- Participation in various competitions like project competition, paper & poster presentation etc., will be consider for evaluation.

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

B. Tech. Semester- VII

							Eva	luatio	on Sch	eme		
Course		Teaching Scheme					Theory (Marks)			Practical (Marks)		
Code	Course	L	Т	P	Credits	Scheme	Max		n. for	Max	Min. for Passing	
						ISE - I	10			**		
THEFTHE	O El C III		M		MSE	30		40				
1##OE###	Open Elective- III	3	-		3	ISE - II	10		40	***		
						ESE	50	20				
						ISE - I	10					
	Switchgear &					MSE	30	-	40			
1EEPC403	Protection	3	-	-	-	- 3	ISE - II	10		40		
	I S S S S S S S S S S S S S S S S S S S					ESE	50	20				
						ISE - I	10					
	High Voltage					MSE	30		7.2			
1EEPC404	Engineering 3 3	3	ISE - II	10	1	40						
						ESE	50	20				
	Economics for Engineers	1				ISE - I	10		40			
		2	-		2	MSE	30	20				
IEEHS405						ISE - II	10					
						ESE	50					
						ISE - I	10					
	Professional Elective-					MSE	30					
1EEPE4**	III	3	-		-	3	3	ISE - II	10	1	40	
	III					ESE	50	20				
	Switchgear &	1				ISE				25	10	
1EEPC451	Protection Laboratory	-	-	2	1	ESE		POE		50	20	
1EEPC452	High Voltage Engineering Laboratory	-	-	2	1	ISE				25	10	
1EEPE4**	Professional Elective- III Laboratory	-	-	2	1	ISE	1447			25	10	
1EEPR456	Internship / Industrial Training	-	-	-	1	ISE				25	10	
1EEDD 457				A	4	ISE				100	40	
1EEPR457	Project Phase - I	-	-	4	4	ESE		POE		50	20	
		14	-	10	22		500			300		

Course Category	HS	BS	ES	PC	PE	OE	PR
Credits	02			08	04	03	05
Cumulative Sum	07	20	32	64	13	09	07

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

> Professional Elective -III

Sr. No.	Course Code	Professional Elective –III	Sr. No.	Laboratory Course Code	Professional Elective - III Laboratory
1	1EEPE406	Industrial Automation and SCADA	1	1EEPE453	Industrial Automation and SCADA Laboratory
2	1EEPE407	Embedded System	2	1EEPE454	Embedded Systems Laboratory
3	1EEPE408	Computer Methods in Power Systems	3	1EEPE455	Computer Methods in Power Systems Laboratory

> [1##OE###] Open Elective – III

Courses Code	Course Name	Department			
1AEOE421	Air Traffic Control and Airport Design				
1AEOE422	Aircraft General Engineering Maintenance	Aeronautical Engineering			
1AEOE423	Design of Fixed wing unmanned aerial vehicles				
1AUOE401	Vehicle maintenance and safety	Automobile Engineering			
1AUOE402	Vehicle Aerodynamics	Automobile Engineering			
1CVOE401	Structural Auditing	Civil Engineering			
1CVOE402	Disaster Management				
1CSOE401 Introduction to image processing and computer vision		Computer Science and Engineeri			
1CSOE402	Introduction to machine learning	Computer Science and Engineering			
1EEOE401	Electric Vehicles	District Engineering			
1EEOE402	Wind and Solar Energy Systems	Electrical Engineering			
0FTOE411	Process Optimization	Part Traballana			
0FTOE412	Cold Storage and Supply Chain Management	Food Technology			
1MEOE401	Total Quality Management				
1MEOE402	Reliability engineering	Mechanical Engineering			
1MEOE403	Renewable Energy Engineering				

HOD-Electrical

Dean Academics

Director

Executive Director

Elec-ST-02104

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

B. Tech. Semester-VIII

							Eva	luatio	on Sch	neme	
Course		Т	each	ing S	Scheme		100.635	heory Iarks		0.58	actical (arks)
Code	Course	L	Т	P	Credits	Scheme	Max	f	in. or sing	Max	Min. for Passing
						ISE - I	10				
155116400	Project Management	2			2	MSE	30		40		
1EEHS409	and Finance	2	-		2	ISE - II	10		40		144
	77.					ESE	50	20			
						ISE - I	10				
I DEPPE AND	Professional Elective-					MSE	30		40		
1EEPE4**	IV	4	-	-	4	ISE - II	10		40		
		,				ESE	50	20			
						ISE - I	10				
. EEDE	Professional Elective-	4				MSE	30		40		
1EEPE4**	V	4	-	-	4	ISE - II	10		40		
						ESE	50	20			
1 EEDD 450	Project Phase- II /			10	0	ISE				100	40
1EEPR458	Internship	-	-	16	8	ESE		POE		100	40
	Total	10	-	16	18		300			200	
	Total Conta	act H	ours	/We	ek:26 hrs						

Course Category	HS	BS	ES	PC	PE	OE	PR
Credits	02				08		08
Cumulative Sum	09	20	32	64	21	09	15

Cumulative Sum of Credits- 170

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Professional Elective -IV

Sr. No.	Course Code	Professional Elective -IV
1	1EEPE410	Energy Storage Systems
2	1EEPE411	Industrial Drives
3	1EEPE412	FACTS

Professional Elective -V

Sr. No.	Course Code	Professional Elective -V
1	1EEPE413	Power Quality Issues and Mitigation
2	1EEPE414	Electrical Installation, Testing and Maintenance
3	1EEPE415	HVDC Systems

Comparison of AICTE & Institute Curriculum

Course Category	HS	BS	ES	PC	PE	OE	PR	Total
AICTE	12	26	20	53	18	18	11	158
Department of Electrical Engineering	09	20	32	64	21	9	15	170
AICTE (%)	7.5	16.4	17.0	33.5	11.4	11.4	6.9	100
Department of Electrical Engineering (%)	5.2	11.7	19.0	38.0	12.3	5.2	8.8	100

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEOE401, Electric Vehicles
Prerequisite/s	-
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	mes (COs):
Upon successf	ul completion of this course, the student will be able to:
1EEOE401_1	Interpret vehicle mechanics & impact on environment of traditional transportation system.
1EEOE401_2	Choose appropriate propulsion system for Electric and Hybrid Electric Vehicles.
1EEOE401_3	Select suitable energy storage & regeneration system for Electric and Hybrid Electric Vehicles.
1EEOE401 4	Classify configurations of Electric and Hybrid Electric Vehicles.
1EEOE401_5	Describe operating principle and performance characteristics of fuel cell vehicle.
1EEOE401_6	Discuss energy management and infrastructure requirement for EV charging.

Course	Contents:	
Unit 1	Environmental Impact and Vehicle Fundamentals Petroleum resources, induced cost, air pollution, global warming, importance of different transportation development, history of electric and hybrid electric vehicles, general description of vehicle movement vehicle resistance, power train tractive effort and vehicle speed, vehicle performance, operating fuel economy, braking performance	07 Hrs
Unit 2	Propulsion Systems IC Engine: Spark ignited IC engines- Operating principle, operating parameters, Compression ignition IC engines Electrical Drives: DC Motor Drives - Principle of operation and performance, combined armature and voltage control, chopper control of DC motor drives, Induction motor drive- Basic operating principle, Volt/hertz control, power electronic control, field-oriented control, BLDC motor drive-Basic principle, Control of BLDC drive, SRM drive- SRM drive controller, Modes of operation	07 Hrs
Unit 3	Energy Storage and Regeneration Electrochemical batteries and its types - Electrochemical reaction, thermodynamic voltage, specific energy, power, efficiency, applications of different battery technologies in EV and HEV, Battery Management System Ultra capacitors - Features, Basic operating principle, Performance, applications of different ultra-capacitor technologies in EV and HEV Ultra high speed flywheels - operating principle, power capacity, applications of different flywheel technologies in EV and HEV	07 Hrs

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

	Fundamentals of regenerative braking- Energy consumption in braking, braking power and energy on front and rear wheels, brake system for EV and HEV	
Unit 4	Electric Vehicles (EV) Configurations of EV, Performance of EV, Traction motor characteristics, tractive effort and transmission requirement, vehicle performance, tractive effort in normal driving, energy consumption, Concept of hybrid electric drive trains, architecture of HEV drive trains, series hybrid, parallel hybrid-Torque coupling drive trains, speed coupling drive trains, speed and torque coupling drive trains.	07 Hrs
Unit 5	Fuel Cell Vehicles (FCV) Operating Principles of Fuel Cells, Fuel Cell System Characteristic, Fuel Supply-Hydrogen Storage and production, Configuration of (FCV), Control Strategy, Parametric Design	07 Hrs
Unit 6	E- Mobility and Charging facilities Energy Management Strategies, Automotive networking and communication, EV charging standards, Connected Mobility and Autonomous Mobility- case study, E-mobility Indian Roadmap Perspective. Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs, Types of EV charging connector	07 Hrs

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Modern Electric, Hybrid Electric and fuel cell vehicles	Mehrdad Ehsani, Yimin Gao	CRC Press	First	2005
2	Electric and Hybrid Vehicles	Iqbal Husain	CRC Press	Second	2010
3	Electric Vehicle Technology Explained	James Larminie, John Lowry	Wiley	First	2003
4	Hybrid and Alternative Fuel Vehicles	James D. Halderman and Tony Martin	Professional Technician	Second	2010

Reference Books

Sr. No.	Title	Author	Publisher	Edition	Year of Edition
1	Fundamentals of Electrical Drives	G. K. Dubey	CRC Press	First	2002
2	How Your Car Works: Your Guide to the Components & Systems of Modern Cars, Including Hybrid & Electric Vehicles	Arvid Linde	RAC Handbook	Second	2011
3	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi, M. Abul Masrur and David Wenzhong Gao	Willey Publications	Second	2011
4	Storage Batteries	Vinal. G.W	John Wiley & Sons Inc	Fourth	2012

HOD-Electrical

Dean Academics

Pal

B. Tech. Semester - VII
1EEOE402, Wind and Solar Energy Systems
1EEES103
03/00/00
03
10/30/10/50

Course Outco Upon successf	mes (COs): ul completion of this course, the student will be able to:
1EEOE402_1	Determine needs of Renewable energy Sources and their utilization.
1EEOE402_2	Describe solar power generation systems, characteristics, associated terminologies and algorithms to maximize energy extraction
1EEOE402_3	Examine the generation aspects of wind resource assessment and characterization.
1EEOE402_4	Explain grid integration of renewable energy sources and its economic aspects.
1EEOE402_5	Focus energy storage in grid integration of renewable energy sources and smart grid system.
1EEOE402_6	Design the standalone wind and solar energy system.

Unit 1	Introduction to Renewable Energy Sources (RES) Global and Indian scenario of RES, need for alternative energy sources, advantages and disadvantages of RES, classification of RES and comparison, key factors affecting RES.	04 Hrs
Unit 2	Solar Energy Introduction, Fundamentals Solar Radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability. Technologies-Amorphous, monocrystalline, polycrystalline; V-I characteristics of a Photo Voltaic cell (PV cell), PV module, array, basics of PV cell, materials used for PV cell, efficiency of PV cell, equivalent electrical circuit, open circuit voltage and short circuit current, I-V and P-V curves, effects of different electrical parameters on I-V & P-V curves Solar thermal power generation, solar photovoltaic power generation, Maximum Power Point Tracking (MPPT) algorithms.	09 Hrs
Unit 3	Wind Resource Assessment History of wind power, Indian and Global statistics, Wind physics - aerodynamics of wind turbines, airfoil, lift & drag characteristics, power coefficient, Betz limit, Tip speed ratio, stall and pitch control, capacity factor, Wind speed statistics-probability distributions, Wind speed and power - cumulative distribution functions, site selection and layout of wind farm, Fixed and Variable speed wind turbines quality standards for wind turbines, review of modern wind turbine technologies.	08 Hrs

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 4	Integration of renewable energy sources to the grid and storage system Grid Connected Photo voltaic power generation system, off-grid system (Standalone system). Grid Connected wind mill, off-grid system (standalone system), Micro grid Concept Wind and Solar Hybrid Micro grid, Wind farm behavior during grid disturbances, power system interconnection experience in the world, Economic aspects. Storage System Introduction, need for storage for RES, traditional energy storage system- battery, fuel cell, principle of operation, types of fuel cell.	
Unit 5	Emerging Trends in Renewable Energy Introduction to Smart Grid, Smart grid in Indian context, architecture of Smart Grid, advantages & disadvantages, key challenges for Smart Grid, Smart Grid technologies, standards & codes for grid integration of DG	
Unit 6	Systems. Recent trends in Wind and solar systems. Case Study on wind and Solar System Design of standalone system by utilizing PV system. Design of standalone system by utilizing wind system. Integration of wind and Solar System. Configuration of PV and wind System.	

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Solar Photovoltaics	Chetan Singh Solankhi	PHI Publication	Third	2015
2	Solar Energy	S.P. Sukhatme	Tata McGraw Hill	Fourth	2017
3	Renewable and Efficient Electric Power Systems	Gilbert M. Masters	John Wiley and Sons	Third	2004
4	Solar Energy : Fundamentals, Design, Modeling and Applications	G.N. Tiwari	Narosa Publishing House Pvt. Ltd	Revised	2013

Reference Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Wind Power in Power Systems	Thomas Ackermann	John Wiley and Sons Ltd	Second	2012
2	Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems	Siegfried Heier,	John Wiley and Sons Ltd	Third	2014
3	Wind and Solar Power Systems	Mukund R Patel	CRC Press	Second	2006
4	Wind Energy Handbook	Tony Burton	John Wiley and Sons Ltd	Second	2011

HOD Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPC403, Switchgear & Protection
Prerequisite/s	1EEPC209, 1EEPC210, 1EEPC304, 1EEPC308,
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	omes (COs): ful completion of this course, the student will be able to:
1EEPC403_1	Explain the working principle of Circuit breakers, fuses and Arc Interruption process
1EEPC403_2	Discuss the operation of numerical relay and phase measurement unit
1EEPC403_3	Describe modern protection schemes like microprocessor-based relays for the protection of the power system equipment's
1EEPC403_4	Distinguish between relays according to their characteristics and its applications
1EEPC403_5	Select the reference level for Relay using Plug Setting multiplier and Time Multiplier.
1EEPC403_6	Analyze performance of protection scheme of Transformer, Generator, Busbar and Transmission line.

Course	Contents:	
Unit 1	Arc Interruption Process Voltage - current characteristics of arc, Principles of DC and AC arc interruption, high resistance and current zero interruption, arc voltage, Transient Restriking Voltage (TRV), Recovery voltage, RRRV, current chopping, resistance switching, capacitive current interruption.	06 Hrs
Unit 2	Circuit Breakers & Fuses Classification of circuit breakers, construction and working of Air break and Air Blast CB, SF6 and Vacuum CB, HVDC Circuit breakers, MCB, ratings of CB and testing of CB, Fuse – Rewireable and HRC fuse, fuse characteristics, application, and selection of fuse.	07 Hrs
Unit 3	Over Current Relays Plug Setting, TSM, construction and working of electromagnetic relays. Time current characteristics of over current relay, Directional relay, Microprocessor based over current relay, Directional over current relay, drawbacks of over current schemes.	08 Hrs
Unit 4	Transformer Protection Circulating current and opposed voltage principles, percentage differential relay, line protection, carrier aided protection scheme, Problems associated with percentage differential protection, Harmonic Restraint and Harmonic blocking schemes, Restricted Earth fault protection, Buchholz relay for incipient faults	08 Hrs

HOD-Electrical

Dean Academics

Director

	Generator and Induction Motor Protection: Differential protection of generator, stator and rotor protection schemes of Generator, Loss of Excitation, Prime Mover Failure protection, Induction motor stator and rotor protection	
Unit 5	Transmission line Protection Impedance, reactance and admittance characteristics, relay settings for 3 zone protection, out of step blocking scheme, blinder relay, numerical relays for transmission line protection, microprocessor-based impedance, Reactance and Mho relays Bus Bar protection: Frame Leakage protection of bus bar, Circulating current protection of bus bar, High impedance protection of busbar.	07 Hrs
Unit 6	Recent Developments in Protection Introduction to numerical/digital relay. Data Acquisition System (DAS), Numerical Overcurrent Protection, Numerical Differential Protection, Numerical Distance Protection, Phase Measurement Unit (PMU).	06 Hrs

-	Text Books						
Sr. No	Title	Author	Publisher	Edition	Year of Edition		
1	Power System Protection and Switchgear	Badri Ram, Vishwakarma	Tata McGraw Hill	Fifteenth	2001		
2	A Tex book of Power System Engineering.	R.K. Rajput	Laxmi Publications	First	2007		
3	Principles of Power system	V.K. Mehta	S Chand	Third	2005		
4	Switchgear and Protection	Sunil S. Rao	Khanna publishers, New Delhi	Second	1986		

Reference Books					
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Switchgear and Protection	J.B.Gupta	S.K.Kataria & Sons	Second	2004
2	Fundamentals of Power System Protection	Y. G. Paithankar, S. R. Bhide	PHI	Second	2013
3	Power System Protection & Switchgear	Oza, Nair, Mehta and Makwana	MGH pub	Second	2011
4	Protective Relaying	J. Lewis Blackburn, Thomas J. Domin	CRC Press	Third	2006

HOD-Electrical

Dean Academics

Director

Executive Director

B. Tech-Cle-06 (3)

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

10/30/10/50

`Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPC404, High Voltage Engineering
Prerequisite/s	1EEPC305, 1EEPC310
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03

Evaluation Scheme: ISE I / MSE / ISE II / ESE

Course Outco	omes (COs): ful completion of this course, the student will be able to:
1EEPC404_1	Choose the appropriate circuit for generation of high DC/AC impulse voltages and currents.
1EEPC404_2	Apply suitable techniques used in the measurement of high DC/AC impulse voltages and currents.
1EEPC404_3	Illustrate the mechanism of breakdown processes in gases and vacuum.
1EEPC404_4	Summarize the breakdown mechanisms in liquid and solid insulating materials.
1EEPC404_5	Solve the numerical on impulse generator, electrostatic voltmeter, Rogowski coil and breakdown voltages
1EEPC404_6	Analyze testing methods of high voltage electrical power apparatus.

Course	Contents:	
Unit 1	Electric Breakdown in Gases and Vacuum Ionization and Decay Processes: Ionization by Collision, Photo- ionization and Secondary Ionization Processes. Electric Breakdown in Gases: Townsends Breakdown Mechanism, Breakdown in Electronegative Gases, Time Lags for Breakdown, Streamer Mechanism of Spark, Paschen's Law, Gaseous Breakdown in Non-uniform Fields, Corona Discharges, Practical Considerations using Gases for Insulation Purposes, Mechanisms for Breakdown in Vacuum Insulation.	07 Hrs
Unit 2	Electric Breakdown in Liquids and Solids Electric Breakdown in Liquids: Properties of Liquid Dielectrics, Conduction and Breakdown in Pure Liquids, Conduction and Breakdown in Commercial Liquids: Suspended Particle Mechanism, Cavitation and Bubble Mechanism, Stressed Oil Volume Mechanism. Breakdown in Solids: Electromechanical Breakdown, Thermal Breakdown, Electrochemical Breakdown, Breakdown due to Treeing and Tracking, Breakdown due to Internal Discharges, Breakdown in Composite Insulation.	06 Hrs
Unit 3	Generation of High DC Voltages: Voltage Doubler Circuit, Cockcroft Walton Voltage Multiplier Circuit, Van de Graff Generator. Generation of High Alternating Voltages: Cascade Transformers, Resonant Transformers Generation of High Frequency AC High Voltages: Tesla Coils	08 Hrs

HOD-Electrical

Dean Academics

Director

Unit 4	Generation of Impulse Voltages: Standard Lightning& Switching Impulse Wave shape, Single Stage and Multistage Impulse Voltage Generation, Switching Impulse Voltage Generation Circuits Generation of Impulse Currents - Wave shape - Analysis of Impulse Current Generator.	07 Hrs
Unit 5	Measurement of High Voltages and High Currents	
Unit 6 High Voltage Testing and Insulation Coordination Testing of Insulators, Testing of Bushings, Testing of Isolators and Circuit Breakers, Testing of Cables, Testing of Transformers, Testing of Surge Arresters, Insulation Coordination		06 Hrs

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	High Voltage Engineering	M.S.Naidu and V.Kamaraju	Tata McGraw Hill Education (India) Pvt. Ltd.	Fifth	2013
2	High Voltage Engineering	C.L.Wadhwa	New Age International Pvt. Ltd.	Third	2012
3	High Voltage Engineering Fundamentals	E. Kuffel, W. S. Zaengl, J. Kuffel	Elsevier	Second	2012
4	Fundamentals of High-Voltage Engineering	Ravindra Arora and Bharat Singh Rajpurohit	Wiley	First	2019

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	An Introduction to High Voltage Engineering	Subir Ray	Prentice Hall India Learning Private Limited	Second	2013
2	High Voltage Technology	L.L. Alston	Oxford University Press,	First	2011
3	High Voltage Engineering	E.Kuffel and M. Abdullah,	Pergamon Press	First	2013
4	High-Voltage Engineering: Theory and Practice	Mazen Abdel- Salam, Hussein Anis, Ahdab El- Morshedy, RoshdyRadwan	Marcel Dekker, New York	Second	2000

HOP-Electrical

Dean Academics

Director

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEHS405, Economics for Engineers
Prerequisite/s	-
Teaching Scheme (Lecture/Practical/Tutorial)	02/00/00
Credits	02
Evaluation Scheme: ISE I/MSE/ISE II/ESE	10/30/10/50

Course Outco Upon successf	mes (COs): ul completion of this course, the student will be able to:	
1EEHS405_1 Explain terms in microeconomics and macroeconomics.		
1EEHS405_2	Illustrate law of supply and law of demand for managerial Decision making.	
1EEHS405_3	Describe financial System in India.	
1EEHS405_4	Classify taxes according to direct, indirect taxes, Import and Export Management and its impact on economy.	
1EEHS405_5	Analyze market structure and economic theory for firms.	
1EEHS405_6	Select financial tools for personal portfolio management	

Unit 1	Introduction to Economics Definition, Nature and Scope of Economics, Micro Economics and Macro Economics, Managerial Economics and its relevance in business decisions. Per Capita Income, Gross Domestic Product, Gross National Product, Fiscal policy, Foreign Reserve. Different sectors and their contribution to economy. Flow in an economy, Engineering efficiency, Economic efficiency, Scope of engineering economics.	04 Hrs		
Unit 2	Demand and Supply Analysis. Law of supply and demand, Correlation of Engineering and Economics, Theory of Demand, Types of Demand. Determinants of demand, Demand Function, Demand Schedule, and Demand curve, Law of Demand, Elasticity of Demand. Price Elasticity, Income Elasticity, Arc Elasticity. Cross Elasticity and Advertising Elasticity. Uses of Elasticity of Demand for managerial decision making, Demand forecasting. Supply Analysis; Law of Supply, Supply Elasticity; Analysis and its uses for managerial decision			
Unit 3	making. Price of a Product under demand and supply forces. Case Studies Financial System Components of Monetary and Financial System, Central Bank – Commercial Banks & their functions; Monetary and Fiscal Policy Tools (CRR, SLR, Repo rate, Reverse repo rate, Bank rate) & their impact on the economy. Inflation-meaning, Causes of Inflation, and its impact.			
Unit 4	Taxation System and Import Export. Introduction of taxation system, Direct tax (basic concepts, Types of Direct Taxes) and Indirect taxes (Goods Service Tax, Excise, Custom, and Value Added Tax).India's Import and Export.	04 Hrs		

HOB-Electrical

Dean Academics

Director

Unit 5	Market Structure and Economic Theory Meaning of Market, Types of Market – Perfect Competition, Monopoly, Oligopoly, And Monopolistic Competition. The Firm in Theory and Practice Economic Theory of the Firm, The Behavioral Theory of the Firm, Managerial Theories of the Firm, Profit concepts & analysis, Game Theory and Asymmetric Information. Case Studies.	05 Hrs
Unit 6	Personal Finance Introduction of personal finance, goal setting, Planning, Different investment options — Fixed deposit, Recurring deposit, Shares, Non-convertible Debentures (NCD), National Pension Schemes (NPS), Public provident fund (PPF), Employee Provident Fund (EPF), Mutual Fund (MF) etc. Insurance—types of insurance, term insurance, life insurance, health insurance. Portfolio Management. Case Study.	05 Hrs

Text Books

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Fundamentals of Engineering Economics	Pravin Kumar	Wiley Precise Text book	First	2015
2	Principles of Economics	Mankiw Gregory	Thompson Asia	First	2002
3	Managerial Economics	V. Mote, S. Paul, G. Gupta	Tata McGraw Hill	Third	2004
4	Textbook of Business Economics	Pareek Saroj	Sunrise Publishers	Second	2003

Reference Books

reici	CHCC DOORS	Parameter and the second secon			
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Engineering Economics,	R.Paneer Selvan	PHI	Second	2015
2	Engineering Economy	Sullivan and Wicks	Pearson	First	2020
3	Economics for Engineers	James L.Riggs, David D. Bedworth, Sabah U. Randhawa	Tata McGraw Hill	Third	2010
4	Engineering Economics Analysis	Michael R Lindeburg	Professional HUB	Second	2016

HOD-Electrical

Dean Academics

Director

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPE406, Industrial Automation and SCADA
Prerequisite/s	1EEES108 ,1EEES156,1EEPC211
Teaching Scheme: Lecture/Tutorial/ Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successf	omes (COs): oul completion of this course, the student will be able to:		
1EEPE406_1	Summarize the fundamental principles of industrial automation		
1EEPE406_2	Apply the concepts of fundamentals of logic for various processes of automation.		
1EEPE406_3	Analyze and formulate the requirements of appropriate ladder programs to provide solutions using PLCs.		
1EEPE406_4	Construct, debug and test the programs developed for digital and analog operations.		
1EEPE406_5	Build architecture of SCADA and explain the importance of SCADA in critical infrastructure		
1EEPE406_6	EEPE406_6 Propose the knowledge of PLC, SCADA and DCS with industrial networking protocols for process industries.		

Course	Contents:	
Unit 1	Introduction to Automation: Fundamentals of industrial automation, Definition and Goals of Automation, need and role of automation, evolution of automation. Types of processes, comparison, evolution of PLC, Types of Automation	05 Hrs
Unit 2	Fundamentals of Logic: Number systems and codes, Boolean Algebra, Logic Gates, Karnaugh map, Combinational Logic circuits-code conversion, Combinational logic optimization and design-SOP and POS form, reduction techniques	07 Hrs
Unit 3	Programmable Logic Controller: Hardware Components, Basic PLC structure, Types of PLC, Inputs and Outputs, Factors to consider in selecting PLC, General PLC Programming Procedure, PLC Programming Languages, Processor Memory Organization, Creating ladder diagram for real time task, Mnemonic Programming Code	09 Hrs
Unit 4	PLC Functions: Programming Timers, Programming Counters, Program control instructions, Data Manipulation Instructions, Math Instructions, Sequence rand Shift Register Instructions, Creating ladder diagram from process control descriptions, program editing, commissioning and monitoring, preventive maintenance and troubleshooting	09 Hrs

HOD-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute

Department of Electrical Engineering

Unit 5	Introduction to SCADA Systems: Introduction, definitions and history of Supervisory Control and Data Acquisition, typical SCADA system Architecture, Communication requirements, Desirable Properties of SCADA system, features, advantages, disadvantages and applications of SCADA. SCADA Architectures (First generation - Monolithic, second generation - Distributed, Third generation - Networked Architecture),		
Unit 6	SCADA Protocols and SCADA Systems in Industries: Open systems interconnection (OSI) Model, TCP/IP protocol, DNP3		

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Programmable Logic Controllers: Principles and Application	John Webb, Resis Ronald,	Prentice Hall of India	Fifth	2007
2	Programmable Logic Controllers: Programming Methods and Applications	Hackworth	Pearson India	First	2008
3	Programmable Logic Controllers	Frank Fetruzella	Elsevier India	Third	2007
4	Concept of SCADA System and its Evolution	Mini S. Thomas, John Douglas, McDonald	CRC Press	First	2015

Reference Books:						
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1	Real Time Computer Control	Bennett Stuart	Prentice Hall	First	1988	
2	Measurement Systems	Doebelin E. O.	McGraw-Hill International Editions	Fourth	1990	
3	Practical Modern SCADA Protocols	Gordan Clark, Deem Reynders	Elsevier	First	2004	
4	Programmable Logic Controllers with Applications	P. K. Srivastava	BPB Publications	First	2004	

HOD-Electrical

Dean Academics

Prector

Executive Director

B-Tech - Cte - 12/39

Sant Dnyaneshwar Shikshan Sanstha's

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPE407, Embedded Systems
Prerequisite/s	1EEPC211, 1EEES311
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00
Credits	03
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	omes (COs): ful completion of this course, the student will be able to:
1EEPE407_1	Describe the building blocks of embedded systems, processors, integration of hardware and software and design technologies.
1EEPE407_2	Utilize the memory organization techniques and memory devices appropriate for an embedded system.
1EEPE407_3	Select appropriate Embedded Networking protocols based on the distance, speed, size of data for Data transmission and reception in embedded system.
1EEPE407_4	Apply the knowledge of Embedded Design Life Cycle and operate embedded development strategies.
1EEPE407_5	Organize the Real Time Operating System for embedded system design.
1EEPE407_6	Adapt the real-world Embedded System Applications and Case Studies

Course	Contents:	
Unit 1	Introduction to Embedded Systems: Definition and classification – Overview of Processors – Hardware Units in an Embedded System –Software Embedded into System – Design Technologies: Embedded Systems on Chip (SoC), Design Process and Challenges	07 Hrs.
Unit 2	Memory Organization and Devices Memory Devices – Shared Memory - DMA – Interfacing Processor - Memory and I/O Units - Memory Management Methods- Cache Mapping Techniques-Dynamic Allocation – Fragmentation- Timer and Counting Devices, Watchdog Timer, Real Time Clock, I/O Device Ports & Buses.	07 Hrs.
Unit 3	Embedded Networking Protocols Communication Protocols: RS232, RS422, RS485 – Standard, Signalling/communication Techniques, advantages, applications; Inter Integrated Circuits (I ² C) - Master-Slave Communication, Multi-Master Communication, CAN bus Protocols: Overview, Frame formats of Standard and Extended CAN, Arbitration Field, Message Types, Error Checking and Fault Confinement, CAN Bus Traffic, CMRR.	07 Hrs.
Unit 4	Embedded Firmware Development Environment Embedded Product Development Life Cycle- Objectives, Different Phases of EDLC, Modelling of EDLC; Issues in Hardware- Software Co-design, Data Flow Graph, State Machine Model, Sequential Program Model, Concurrent Model, Object-Oriented Model.	07 Hrs.

HOP-Electrical

Dean Academics

Director

Sant Dnyaneshwar Shikshan Sanstha's

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Unit 5	Introduction to basic concepts of RTOS - Interrupt handling in RTOS, Task and Threads, Multiprocessing and Multitasking, Scheduling, Task communication -Message Passing - Inter Process Communication - Synchronization between processes-Semaphores, Mailbox, Pipes, Priority Inversion Problem		
Unit 6	Embedded System Application and Case Studies Automatic Washing Machine, Digital Clock, Audio Player - Drone with Camera – Case Studies on Embedded System for an Adaptive Cruise Control System in a Car, Chocolate Vending Machine and Smart Card.	07 Hrs.	

Text Books:						
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1	Embedded System - Architecture Programming and Design	P.Raj Kamal	McGraw Hill Education	Third	2017	
2	Introduction to Embedded Systems	Shibu. K.V	McGraw Hill Education India Private Limited	Second	2017	
3	Embedded Systems-An Integrated Approach	Lyla B Das	Pearson Education India	First	2013	
4	Embedded / Real-Time Systems: Concepts, Design and Programming	Prasad K. V. K. K.	Dreamtech Press India Pvt. Ltd	New	2003	

Refe	erence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Embedded System Design: A Unified Hardware/Software Introduction	Frank Vahid and T ony Givargis	John Wiley & Sons	Third	2006
2	Computers as Components: Principles of Embedded Computing System Design	Wyne Wolf	Wiley India Pvt. Ltd	Second	2008
3	Embedded Systems Architecture	Tammy Noergaard	Newnes	Second	2012
4	An Embedded Software Primer	David E. Simon	Pearson Education India	First	2004

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech-E1e-14/39

Class	B. Tech. Semester - VII		
Course Code and Course Title	1EEPE408, Computer Methods in Power Systems		
Prerequisite/s	1EEPC202, 1EEPC209, 1EEPC308		
Teaching Scheme: Lecture/Tutorial/Practical	03/00/00		
Credits	03		
Evaluation Scheme: ISE I / MSE / ISE II/ ESE	10/30/10/50		

Course Outco	omes (COs): (Theory)
Upon successf	ful completion of this course, the student will be able to:
1EEPE408_1	Illustrate rules of writing incidence matrices and methods of obtaining network matrices of an electrical network.
1EEPE408_2	Construct incidence matrices of an electrical network.
1EEPE408_3	Compute admittance and impedance matrices of an electrical network by applying appropriate method.
1EEPE408_4	Determine the unknown parameters at buses for power network by applying numerical methods for formulating load flow problems.
1EEPE408_5	Develop equations for power network faults using two-port network theory and the two-component method.
1EEPE408_6	Calculate the unknown parameters of power network under kinds of faults.

Course	Contents:	
Unit 1	Network Topology Introduction, basic principles in power system analysis, elementary graph theory, incidence matrices, connectivity, primitive network, numerical treatment expected	05 Hrs.
Unit 2	Computer Solution Methods Using Admittance Matrix Introduction, formation of Y _{bus} by singular transformation, non-singular transformation, inspection- modeling of transmission lines, modeling of transformer, modeling of shunt elements, modeling of loads, modeling of generator internal impedance, step by step algorithm for formation of Y _{bus} , numerical treatment expected, case study of power transmission/distribution substation in Maharashtra.	09 Hrs.
Unit 3	Computer Solution Methods Using Impedance Matrix Introduction, impedance matrix in shunt fault computations, impedance matrix algorithm, adding a radial impedance to the reference node, adding a radial branch to a new node, closing a loop to the reference, closing a loop not involving the reference, numerical treatment expected, and case study of power transmission/distribution substation in Maharashtra.	07 Hrs.
Unit 4	Computer Techniques for Load flow analysis Introduction, impact of computers, orientation of engineering problems to computers, power flow equation, classification of buses, operating constraints, data for load flow, modelling for load flow studies, numerical methods for load flow analysis, case study of power transmission/distribution substation in Maharashtra.	07 Hrs.

HOP-Electrical

Dean Academic

Director

Unit 5	Simultaneous Faults Introduction to Simultaneous faults by two-port network theory- Two port networks, interconnection of two port networks, simultaneous fault connection of sequence networks, series-series connection (Z-type faults), parallel -parallel connection (Y-type faults), series-parallel connection (H-type faults), simultaneous faults by matrix transformations- constraint matrix for Z-type faults, constraint matrix for Y-type and H-type faults, numerical treatment expected.	07 Hrs.
Unit 6	Analytical Simplifications by Two Component Method Introduction to two component method, Shunt Faults- Single Line to Ground Fault, Line to Line Fault, Double Line to Ground Fault, Three Phase Fault, Series Faults- Two Line Open Fault, One Line Open Fault, Numerical treatment expected.,	07 Hrs.

Text Books:						
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
01	Circuit Theory (Analysis and Synthesis)	A. Chakrabarti	Dhanpat Rai & Co.	First	2010	
02	Advanced Power System Analysis & Dynamics	L.P. Singh	New Age International Publishers	Fifth	2008	
03	Power System Analysis	Grainger, J.J. and Stevenson, W. D.	Tata McGraw- Hill Edition	First	1994	
04	Computer Techniques and Models in Power Systems	K. Uma Rao	I.K. International Publishing House Pvt Ltd	Second	2014	

Refe	rence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Analysis of Faulted Power Systems	Paul.M. Anderson	IEEE Press Power Systems Engineering Series	First	1973
02	Introduction to Matrices & Power System	R.Bruce Shipley	Wiley Eastern Ltd	First	2007
03	Computer methods in Power System Analysis	Stagg G.W. & E.L. Abiad	McGraw-Hill	Ninth	1983
04	Operation and Control in Power Systems	Prof. P. S. R. Murty	B.S. Publications	First	2008

HOD-Electrical

Dean Academic

Director

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPC451, Switchgear & Protection Laboratory
Prerequisite/s	1EEPC255, 1EEES257
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/50

Course Outco	mes (COs): al completion of this course, the student will be able to:
	Relate different power system protection components and schemes.
	Examine performance of different types of relays.
1EEPC451_3	
1EEPC451_4	Communicate effectively about laboratory work both orally and writing.
1EEPC451_5	Practice professional and ethical behavior to carry forward in their life.

Expt. No.	Title of Experiment	
1	Drawing sheet showing construction of Circuit Breakers.	
2	Drawing sheet showing construction of Generator and Transformer protection schemes.	
3	Study of construction and working of Induction Disc type relay	
4	Analyze the performance of electro-mechanical over current relay.	
5	Verify the main function of electro-mechanical over voltage relay.	
6	Experimental study of Microprocessor based Over Current Relay	
7	Experimental study of Microprocessor Based Over voltage relay	
8	Experimental study of Microprocessor Based Under voltage Relay.	
9	Experimental study of microprocessor Based Impedance Relay	
10	Power World Simulator for Relay Setting	
11	Perform the simulation of three phase differential protection relay for power transformer	

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech- 61e-17/39

Class	B. Tech. Semester - VII
Lab Code and Lab Title	1EEPC452, High Voltage Engineering Laboratory
Prerequisite/s	1EEPC202,1EEPC253,1EEES257
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/00

Course Outco After successfi	mes (COs):- al completion of this course, the student will be able to,
1EEPC452_1	Illustrate generation and measurement of high voltage and current
1EEPC452 2	Demonstrate electrical breakdown voltage of air & transformer oil
1EEPC452_3	Implement field mapping using Electrolyte Tank
1EEPC452 4	Demonstrate insulation strength of solid dielectric material in cables
1EEPC452 5	Communicate effectively, both orally and in writing journals
1EEPC452 6	Follow professional and ethical principles during laboratory work

Expt. No.	Title of Experiment	
1	Study the characteristic parameters of lighting and switching impulse wave shape.	
2	Measurement of Impulse voltages using 5-stage 150kV 225J impulse generator	
3	Measurement of DC breakdown voltage of air, using sphere gap assembly	
4	Measurement of AC breakdown voltage of air, using sphere gap assembly	
5	Determine breakdown voltage of transformer oil	
6	Insulation Testing using 5 kV AC High Voltage Tester.	
7	Measurement of Insulation Resistance by Megger	
8	Simulation of voltage doubler circuit for generation of high DC voltages using MATLAB	
9	Simulation of Cockroft Walton voltage multiplier circuit for generation of high voltages using MATLAB	
10.	Simulation of Impulse Voltage Generator Using MATLAB Simulink	

Note: Visit to High Voltage Substation

HOB-Electrical

Dean Academics

Director

Executive Director

B-Tech- Gle-18/39

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPE453, Industrial Automation and SCADA Laboratory
Prerequisite/s	1EEES108, 1EEES156 ,1EEPC256
Teaching Scheme : Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/00

Course Outco Upon successfo	mes (COs): ul completion of this course, the student will be able to:
1EEPE453_1	Understand all the important components such as PLC, SCADA, I/O modules and field devices of an industrial automation system.
1EEPE453_2	Develop PLC program in different languages for industrial applications.
1EEPE453_3	Experiment with hands on experience in interfacing transmitters and final control elements (Actuators) with PLC/SCADA
1EEPE453_4	Use modern tools/software (RsLogix, Proficy) to simulate PLC and SCADA programs for a various process control description.
1EEPE453_5	Communicate effectively about laboratory work both orally and in writing.
1EEPE453_6	Work effectively in groups by sharing responsibilities and collaborating on findings.

Expt. No.	Title of Experiment
1.	Assemble various modules and component of PLC to make a PLC system.
2.	Examine INPUT-OUTPUT modules.
3.	Execute ladder diagram for basic and universal logic gates
4.	Prepare ladder diagram for different Arithmetic operations.
5.	Execute ladder diagram for logical operations along with truth table.
6.	Develop Ladder program for timing applications
7,	Develop Ladder program for counting applications
8.	Execute/Prepare all over ladder diagram for industrial process and control.
9.	Use of advanced instruction for application in PLC
10.	Configuring Screens, Graphics and Creating a Project and tags in SCADA 1
11.	Configuring Screens, Graphics and Creating a Project and tags in SCADA 2
12.	HMI (Human Machine Interface) interfacing with PLC

HOD-Electrical

Dean Academics

Director

Executive Director

B- reds -et e-19/39

Class	B. Tech. Semester - VII
Lab Code and Lab Title	1EEPE454, Embedded Systems Laboratory
Prerequisite/s	1EEPC256, 1EEES356
Teaching Scheme: Lecture/Tutorial/Practical	00/00/02
Credits	01
Evaluation Scheme: ISE / ESE	25/50

Course Outco Upon successf	omes (COs) ful completion of this Lab, the student will be able to:
1EEPE454_1	Illustrate the programming concepts of microcontroller.
1EEPE454_2	
1EEPE454_3	
1EEPE454_4	Design and develop the programming using IDE
1EEPE454_5	

Expt. No.	Title of Experiment	
1	8051 Microcontroller Programming in Embedded C using Keil for LED Blinking / Sensor Interfacing	
2	8051 Microcontroller Programming in Embedded C using Keil for Square Wave and PWM Generation.	
3	8051 Microcontroller Programming in Embedded C using Keil to use interrupts for fast processing	
4	Programming with Raspberry Pi Microcontroller Board	
5	Study on process Controller modeling in PLC/SCADA	
6	Programming & Simulation in Simulators/Tools – Proteus / ORCAD	
7	Programming with wired / wireless communication protocol/Network Simulators	
8	Study of one type of Real Time Operating Systems (RTOS)	
9	Programming compilers in Freeware software's / Platforms	
10	Programming & Simulation in Python Simulators /Tools	

HOB-Electrical

Dean Academics

Director

Executive Director

B-Tech-G1e-20/3.9

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPE455, Computer Methods in Power System Laboratory
Prerequisite/s	1EEPC202, 1EEPC354
Teaching Scheme: Lecture/Tutorial /Practical	00/00/02
Credits	01
Evaluation Scheme: ISE/ESE	25/00

Course Outco	omes (COs): Oul completion of this course, the student will be able to:
1EEPE455_1	Illustrate rules and methods of writing various incidence and network matrices of electrical network.
1EEPE455 2	Apply numerical methods for power flow solution.
1EEPE455_3	Use modern tools/software (MATLAB/POWER WORLD SIMULATOR) to model and solve power flow problems.
1EEPE455 4	
1EEPE455_5	Practice professional and ethical behavior to carry forward in their life.

Expt. No.	Name of the Experiment Following Experiments are performed on MATLAB/Simulink/ETAP			
1	Draw directed graph for given power system network.			
2	Formation of Y _{BUS} (without/with half line charging admittance) by direct inspection method.			
3	Formation of Y _{BUS} (without/with half line charging shunt admittance/with mutual impedance) by singular transformation method			
4	Formation of Y _{BUS} by singular transformation method.			
5	Y _{BR} and Z _{BR} by singular Transformation.			
6	Z _{LOOP} by singular Transformation.			
7	Z _{LOOP} and Z _{BR} by non- singular Transformation.			
8	Y _{LOOP} and Y _{BR} by non- singular Transformation.			
9	Z _{BUS} building algorithm.			
10	Graph theory approach to electrical circuits.			
11	Load Flow Analysis using ETAP Software.			
12	Load Flow Analysis using Power World Simulator Software.			

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech-cle-2/39

Class	B. Tech. Semester - VII	
Course Code and Course Title	1EEPR456, Internship / Industrial Training	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial/Practical	00/00/00	
Credits	01	
Evaluation Scheme: ISE / ESE	25/00	

Course Outco	omes (COs):
Upon successf	ful completion of this course, the student will be able to:
1EEPR456_1	Demonstrate competency in relevant engineering fields through problem identification and formulation
1EEPR456_2	Apply appropriate techniques, resources, and modern engineering tools to solve industrial problems.
1EEPR456_3	Communicate on actual industrial environment, showing engineering & management principles.
1EEPR456_4	Present an ability to write technical documents and give oral related to the work completed
1EEPR456_5	Demonstrate the knowledge of professional and ethical responsibilities.

Guidelines

- The students have to undergo an Internship / Industrial Training of minimum period of two
 weeks in an industry preferably dealing with Electrical Engineering during the semester
 vacation after sixth semester and complete before the start of seventh semester.
- The students have to submit a report of the training undergone which includes brief overview
 of the industry, product details, production practices, management principles, modern
 engineering tool usage, types of electric supply and its utilization, electric tariff, safety
 measures, maintenance practices and energy auditing etc.
- An internal evaluation will be carried out for examining the quality and authenticity of contents of the report.
- Student should give the presentation based on the Internship / Industrial Training undergone.
- A viva voce / discussion which include comprehensive questions based on Internship / Industrial Training is expected.

COs correlated with three learning domains will be assessed during the semester through rubrics based on student's performance in Internship / Industrial Training.

Assessment Tools: Internal OE, Internship / Industrial Training Assessment Rubrics.

HOD-Electrical

Dean Academics

Director

Executive Director

B. roh. Gle-22/39

Class	B. Tech. Semester - VII
Course Code and Course Title	1EEPR457 Project Phase I
Prerequisite/s	All relevant Courses.
Teaching Scheme: Lecture/Practical/Tutorial	00/08/00
Credits	04
Evaluation Scheme: ISE / ESE	100/50

Course Outco	omes (COs):- cul completion of this course, the student will be able to,		
1EEPR457_1	Identify the real time application, social, local industrial problems relevant to the societal and environmental issues for sustainable development using survey and literature review.		
1EEPR457_2	Analyze complex engineering problems and give cost-effective, optimal solution considering societal, health, legal, and safety.		
1EEPR457_3	Design of system components or processes that meet the specified needs by using advance tools/ techniques/ resources.		
1EEPR457_4	Demonstrate effectively as an individual or as a team for understanding of the engineering and management principles and apply these to manage projects for maintaining professional and ethical principles.		
1EEPR457_5	Communicate effectively on complex engineering activities, write effective reports, documentation and make effective presentations.		
1EEPR457_6	Recognize independent and life-long learning in the broadest context of technological change.		

Course Contents:	
The project work should be based on hardware assembly. In Project Phase-I the batch of maximum 4 students should finalize. Identification of Problem for the project should finalize with consultation of guide.	09 Hrs.
Literature review: Literature survey, quality of literature and Interlink of literature survey with problem.	10 Hrs.
Synopsis: must contain identification of problem, literature review, proposed work, method and methodology, budget and work plan for complete year.	09 Hrs.
Simulation/Hardware Analysis/Proof of Concept: At least software design or simulation of project must be there with result. Also hardware design along with components selection for layout of hardware.	
Project Phase-I Report: The circuit should be finalized and the results of simulation shall be presented in the report of project phase I. Project Phase-I report should contains Introduction, Literature review, Proposed work, Design Calculation, simulation model and results.	08 Hrs.

COs correlated with Psychomotor and Affective domains will be assessed at the end of semester through various rubrics based on student's performance throughout the semester.

Assessment Tools: External OE, Project Synopsis Assessment Rubric, Project Phase I-Assessment Rubric

HOD-Electrical

Dean Academics

Derector

Class	B. Tech. Semester - VIII		
Course Code and Course Title	1EEHS409, Project Management and Finance		
Prerequisite/s	1EEHS405		
Teaching Scheme: Lecture/Tutorial/Practical	02/00/00		
Credits	02		
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50		

Course Outcor	
Upon successfu	l completion of this course, the student will be able to:
1EEHS409_1	Demonstrate the principle, function, planning and organization of industrial management.
1EEHS409_2	Describe production concept, cost concept and their impact on business decision.
1EEHS409_3	Utilize the concept of Human Resource management and system at various level in general organization
1EEHS409_4	Classify financial sources for business management.
1EEHS409 5	Illustrate the idea of wage schemes and incentives.
1EEHS409_6	Select application of financial analysis methods for project management.

Course (Contents:				
Unit 1	Industrial Management: Principles of management, Importance of management, Functions of management, planning, Organization, staffing, directing, Public relation				
Unit 2	Production Management Production and cost, types of cost and cost control, Budgetary control, purchasing, storekeeping	05 Hrs.			
Unit 3	Personnel Management Definition and concept, Aims, Objective and Functions of Personnel Management, Principles of good Personnel policy	04 Hrs.			
Unit 4	Financial Management Types of Capital, Source of finance, Capital building, Institutions of Industrial finance, cash flow, balance sheet.	04 Hrs.			
Unit 5	Wage Administration Definition of Salary, different wage schemes, Advantages and disadvantages, Incentive, need, types, its merits and demerits.	04 Hrs.			
Unit 6	Project Financial Analysis Methods Need of Investment analysis, Break-even Point, Types of Investment analysis methods NPV, ROI, IRR, Payback Period, Time value of money (Case study). Financial Statement analysis –Cash flow, Balance sheet.	06 Hrs.			

HOB-Electrical

Dean Academics

Director

Executive Director

B-Tech-61=24/39

Text Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Business organization and management	M.C. Shukla	S. Chand	Twelfth	1972
2	ISO 900 quality systems	A. N. Singh	Dolphin Book N Delhi	Fourth	2011
3	Fundamentals of Engineering Economics	Pravin Kumar	Wiley Precise Text book Series	First	2015
4	Principles of Economics	Mankiw Gregory	Thompson Asia	First	2002

Sr. No	rence Books:	Author	Publisher	Edition	Year of Edition
1	Industrial Engineering and Management	O.P. Khanna	Dhanpatrai and Company	Seventeenth	2018
2	Management Information Systems	G.B. Davis, M.H. Olson	Mc Graw Hill	First	1985
3	Managerial Economics	V. Mote, S. Paul, G. Gupta	Tata McGraw Hill	Third	2004
4	Textbook of Business Economics	Pareek Saroj	Sunrise Publishers	Second	2003

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech-GIE-25/39

Class	B.Tech. Semester - VIII
Course Code and Course Title	1EEPE410, Energy Storage Systems
Prerequisite/s	1EEBS102,1EEBS107,1EEES205
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE-I / MSE / ISE-II / ESE	10/30/10/50

Course Outco	
Upon successi	ful completion of this course, the student will be able to:
1EEPE410_1	Determine the requirements of energy storage systems.
	Describe the recent trends in energy storage system.
1EEPE410_3	D 1 4 1111 01 1 0
1EEPE410_4	Illustrate the design aspects of energy storage systems.
1EEPE410_5	Evaluate an efficient energy storage system in electric transportation.
1EEPE410_6	Outline real time applications in transportation and utility

Course	Contents:	
Unit 1	Introduction: Introduction- Impacts and requirements of Electrical Energy Storage system, Classification of Energy Storage Systems, Energy costs and load analysis. Grid Applications of Energy Storage systems, Ancillary Services from Energy storage. Traditional generation costs and optimizations. Economics of energy and power, tied electrical rates and demand response.	10 Hrs.
Unit 2	Electrochemical Energy Storage Batteries: Introduction to battery storage including lead acid, lithium ion, flow Comprehensive analysis of design considerations and application specific needs. Impacts on system cost in terms of life cycle, environmental, and reliability of the end solutions. Recycle battery technology.	09 Hrs.
Unit 3	Advance Energy Storages: Ultra-Capacitors: Introduction to ultra-capacitors including operation, applications, and emerging technologies Super Conducting Magnetic Energy Storage (SMES): Introduction to Super Conducting Magnetic Energy Storage (SMES) operation, theory of usage and emergent research, with focus on large utility scale energy storage facilities. Case Study on Ultra capacitors use for elevator system.	09 Hrs.
Unit 4	Energy Storage: Advantages and disadvantages of mobile vs. stationary energy storage, Mechanical Energy Storage - Models for pumped hydro, capacity and availability, System cost, conversion efficiency. Compressed Gas: Compressed gas storage technologies as bulk energy storage, Models for compressed gas, capacity, efficiency and availability, System cost, conversion efficiency, Applications in carbon capture and appropriation, Case study based on hydro pumps.	10 Hrs.

HOD-Electrical

Dean Academics

Director

Unit 5	Flywheel: Flywheel energy storage system, Models for flywheel capacity, availability, efficiency, and self-discharge, Applications in transportation, uninterruptible power supply (UPS), pulse power, and bulk storage, Selection and design of flywheels for safety and availability in various applications. Case Study on flywheel energy storage system application for frequency regulation of Micro Grid.	09Hrs.
Unit 6	Thermal: Introduction to thermal storage in residential and utility scale applications including molten salts, cold reservoirs, and phase change materials, Analysis of design considerations, material selection, and application specific constraints, Applications in renewable energy at utility scale solar and geothermal power production.	09 Hrs.

Text l	Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Energy Storage	R. Huggins, Robert	Springer	Third	2010
02	Integration and Control of Renewable Energy in Electric Power System,		John Wiley	Second	2010
03	Non-Conventional Energy Sources	S.Hasan Saeed D.K.Sharma	S. K. Kataria & Sons.	Third	2012
04	Understanding Batteries	Ronald M. Dell and David A.J. Rand	Royal Society of Chemistry	First	2001

Refe	rence Books:				
Sr. No	Title	Author	Publisher	Edition	Year
01	Handbook of Energy Storage Demand, Technologies, Integration	Michael Sterner, Ingo Stadler	Springer Berlin Heidelberg	First	2014
02	Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems	Klaus Brun, Timothy C. Allison, Richard Dennis	Elsevier Science	First	2020
03	Electric Energy Storage Systems Flexibility Options for Smart Grids	Pio Lombardi, Przemyslaw Komarnicki, and Zbigniew A. Styczynski	Springer Berlin Heidelberg	First	2017
04	Handbook of Batteries	Linden and Reddy	New York McGraw Hill	First	2002

B-Tech-Gle-27/39

B.Tech. Semester - VIII 1EEPE411, Industrial Drives
,
1EEPC210, 1EEPC303, 1EEPC304, 1EEPC305
04/00/00
04
10/30/10/50

Course Outco	mes (COs):
Upon successf	ul completion of this course, the student will be able to:
1EEPE411_1	Classify the electric drives systems based on the nature of loads, and list the factors affecting the selection of electrical drives.
1EEPE411_2	Outline performance parameters of DC drives fed from AC to DC converters.
1EEPE411_3	Analyze performance parameters of DC drives fed from DC-to-DC converters operating in multi-quadrant operations.
1EEPE411_4	Illustrate the performance characteristics of electrical AC drives.
1EEPE411_5	Apply the dynamic operations and characteristics to compute the performance parameters of the induction motors.
1EEPE411_6	Propose suitable drive components and special electrical drives for industrial drive application.

	Course Contents	
Unit 1	Electrical Drives: Fundamentals and Dynamics Introduction to electrical drives, classification of electrical drives, block diagram of electrical drive, parts of electrical drive, nature of loads and their characteristics, motor load systems, dynamic conditions in electrical drives, stability of electrical drives.	09 Hrs.
Unit 2	DC Drives: Rectifier Fed DC Drives Introduction, review of dc motors concerning classification, speed control, and electric braking, single-phase half and full controlled converter fed dc motor drives, dc series motor drives, introduction to four-quadrant operation and single-phase dual converter fed dc motor drive, three-phase half and full converter fed dc motor drive, four-quadrant operation and three-phase dual converter fed dc motor drive, closed-loop control of converter fed dc drives.	10 Hrs.
Unit 3	DC Drives: Chopper Fed DC Drives Introduction, review of chopper operation concerning its principle, configuration, and classification, one, two, and four-quadrant chopper fed separately excited dc motors drive, chopper fed series dc motors drive, closed-loop control of chopper fed dc drives.	09 Hrs.
Unit 4	AC Drives: Stator Side Control of Induction Motor Drives Introduction, review of types of three-phase induction motors concerning methods of speed control and torque-speed characteristic, three-phase ac voltage controller fed induction motor drive, variable frequency characteristics, block diagram of variable frequency speed control, V/f control, voltage source inverter (VSI) fed induction motor drive, closed-loop control of VSI fed induction motor drive. (Numerical Expected)	10 Hrs.

HOD Electrical

Dean Academics

Director

Executive Director

B-Tech-C1e-28/39

Unit 5	AC Drives: Rotor Side Control of Induction Motor Drives Introduction, conventional rotor resistance control, rotor resistance control using power converters, the concept of slip power recovery, slip power recovery schemes, static Kramer drive, static scherbius drive. (Numerical Expected)	09 Hrs.
Unit 6	Synchronous Machine Drives Synchronous motor variable speed drive, Electric braking Special Electric Drives: Stepper motor drive- types, torque vs. stepping rate characteristics, Servomotor drive, BLDC motor drive, comparison of stepper motor and servomotor drive, and BLDC drive, Switched Reluctance motor drive, Control Schemes of PMDC Drive.	09 Hrs.

Text I	Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Fundamentals of Electrical Drives	G. K. Dubey	CRC Press	Second	2002
02	Electric Drives	N. K. De, P. K. Sen	PHI, Delhi	Third	2007
03	Electric Drives: Concepts & Applications	Vedam Subrahmanyam	Tata Mc- Graw Hill	Second	2011
04	Theory and performance of Electrical Machines	J. B. Gupta	S. K. Katariya & Sons	Second	2015

Refer	ence Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
01	Power Electronics: Converters, Applications & Design	Ned Mohan	Wiley Publications	Third	2003
02	Power Electronics & Variable frequency drives: Technology & applications	Dr. B. K. Bose	Wiley Publications	First	1996
03	Principles of Electric Machines & Power Electronics	P. C. Sen	Wiley Publications	Second	2013
04	Power Electronics: Circuits, Devices, and Applications	M. H. Rashid	Prentice Hall	Third	2003

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech- C1e-29/39

Class	B.Tech. Semester - VIII
Course Code and Course Title	1EEPE412, FACTS
Prerequisite/s	1EEPC303, 1EEPC305, 1EEPC308
Teaching Scheme: Lecture/Tutorial	04/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	omes (COs): iul completion of this course, the student will be able to:
1EEPE412_1	Describe reactive power compensation and FACTS devices on system requirements.
1EEPE412_2	Analyze the performance of shunt compensators based on operating principle, control schemes and loss vs output.
1EEPE412_3	Detect the Power and control circuits of Series Controllers GCSC, TSSC and TCSC
1EEPE412_4	Apply load compensation to the electrical system.
1EEPE412_5	Illustrate phase angle and voltage regulation in power system.
1EEPE412_6	Select the converter-based controllers for reactive power compensation.

Course	Contents:	
Unit 1	FACTS Concept and General: General concept about reactive power compensation, Transmission Interconnections, What Limits the Loading Capability, Power flow in AC Systems, Basic Types of FACTS Controllers, Power Flow and Dynamic Stability Considerations of a Transmission Interconnection, Benefits from FACTS Technology, Compare HVDC and FACTS.	10 Hrs.
Unit 2	Static Shunt Compensators: Objectives of Shunt Compensation, Types of shunt compensators, Operation, Control Scheme, VI and loss vs VAR output characteristics of FC, TSC, TSR & TCR, FC-TCR, TSC-TCR, TBSC, TBSR & TBSC-TBSR.	09 Hrs.
Unit 3	Static Series Compensators: Objectives of Series Compensation, Type of Series Compensators, Operation & Control Scheme of GCSC, TSSC, TCSC,	09 Hrs.
Unit 4	Load Compensation: Significance in load compensation, ideal compensator, Practical considerations, Power factor correction and Voltage Regulation in single phase systems, Approximate reactive power characteristics with example, Load compensator as a voltage regulator, Phase balancing and power factor correction of unsymmetrical loads.	10 Hrs.

HOD-Electrical

Dean Academics

Director

Executive Director

B-rech - 4e-30/39

Unit 5	Static Phase angle and voltage regulator: Objective of voltage and phase angle regulators, thyristor-controlled voltage and phase angle Regulator, switching converter-based voltage and phase angle regulators, Autotransformer and Tap changing transformer.	08 Hrs.
Unit 6	Converter Based controllers: Basic operating principles of Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and Interline Power Flow Controller (IPFC), Comparison Between STATCOM and SVC, Comparison of UPFC & IPFC.	10 Hrs.

Text	Books:				
Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Concept and Technology of Flexible AC Transmission Systems	Narain G. Hingorani and Laszol Gyugyi	IEEE Press, A John Wiley & Sons	Second	2011
2	Thyristor-Based Facts Controllers For Electrical Transmission Systems	R. Mohan Mathur Rajiv K. Varma	IEEE Press, A John Wiley & Sons	First	2002
3	Facts Controller In Power Transmission And Distribution	K.R.Padiyar	New Age International	First	2012
4	Reactive Power Control in Electric Systems	Timothy J. E. Miller	Wiley India Edition	Second	2010

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Power System Stability and Control	P. Kundur	Mc Graw Hill, Inc.	Second	2008
2	EHVAC and HVDC Transmission Engineering and Practice	S. Rao	Khanna publication	Second	2008
3	Power Quality Enhancement Using Custom Power Devices	A. Ghosh and G. Ledwich	Kluwer Academic Publishers,	First	2002
4	Flexible AC Transmission Systems: Modelling and Control (Power Systems)	Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal	Springer	Second	2012

HOD-Electrical

Dean Academics

Director

B.Tech. Semester - VIII	
Course Code and Course Title	1EEPE413, Power Quality Issues and Mitigation
Prerequisite/s	1EEPC305, 1EEPC308, 1EEPC310
Teaching Scheme: Lecture/Tutorial	04/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successf	omes (COs): oul completion of this course, the student will be able to:
1EEPE413_1	Describe different power quality related issues, causes and their effects on power system equipment.
1EEPE413 2	Identify the causes of transient overvoltage and protection devices
1EEPE413_3	Classify the harmonics in three phase and single-phase system.
1EEPE413_4	Distinguish the different methods for mitigation of voltage sags and interruptions.
1EEPE413_5	Evaluate the different power quality monitoring techniques.
1EEPE413 6	Design the filter for suppression of current harmonics.

Course	Contents:	
Unit 1	Introduction to Power Quality: What is power quality, power quality related issues in distribution system, loads and their characteristics, electromagnetic phenomena, power quality evaluation procedure, CBEMA and ITI Curves	10 Hrs.
Unit 2	Voltage Sag, Interruptions and Mitigation: End user issues, ups system, Ferro-resonant transformers, super conducting storage devices, dynamic voltage restorer and application of DSTATCOM.	08 Hrs.
Unit 3	Transient Over-Voltage: Sources of Transient Overvoltage's Principles of Overvoltage Protection Devices for Overvoltage Protection Utility Capacitor-Switching Transients Utility System Lightning Protection Managing Ferro resonance Switching Transient Problems with Loads Computer Tools for Transients Analysis	10 Hrs.
Unit 4	Power Quality Monitoring, Wiring and Grounding: Monitoring considerations, power quality measurement equipment, and assessment of power quality, power quality monitoring and standard, Reasons for grounding, typical wiring and grounding problem, solution to wiring and grounding problem.	10 Hrs.
Unit 5	Fundamentals of Harmonics: Sources of harmonics, effect of harmonics, types and characterization, THDs, influence on power factor, interference with communication network, harmonic indices, and synthesis of harmonic waveform originating from non-linear loads with the help of Fourier analysis. Power definitions and components-single phase circuits and three phase circuits.	09 Hrs.

HOD-Electrical

Dean Academics

Director

Executive Director

B Tech- Ele-32/39

Unit 6	Harmonic Suppression Filters:	
	Shunt passive filters, design considerations case studies, voltage/ current source active filters- types: shunt, series and hybrid types, comparison.	09 Hrs.

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	Electrical Power System Quality	Roger C. Dugan, Mark F. McGranaghan, Surya Snatoso, H. Wayne Beaty	Tata McGraw -Hill	First	2012
2	Electrical Power System Quality	J. Arnillaga , D A Bradey & P S Bodger	John Wiley Sons	First	2000
3	Power System Harmonics	George J. First Wakileh	Springer	First	2007
4	Power Quality Primer	Barry W. Kennedy	Mc Graw Hill	First	2000

Ref	Reference Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1	Uninterrupted Power Supplies and Active filters	Ali Emadi, Abdolhorien Nasiri & Stoyon B Bekiarov	CRC Press	Second	2010	
2	Handbook of Power Quality	Angelo Baggini	John Wiley Sons	First	2008	
3	Power Quality in Electrical Systems	Alexander Kusko & Marc T.Thompson	Mc Graw Hill	First	2017	
4	Power Electronic Converter Harmonics	Derek A. Paice	IEEE Press	First	1997	

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech -61e-33/39

Class	B.Tech. Semester - VIII
Course Code and Course Title	1EEPE414, Electrical Installation, Testing & Maintenance
Prerequisite/s	1EEPC204, 1EEPC209, 1EEPC210, 1EEPC304
Teaching Scheme: Lecture/Tutorial/Practical	04/00/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco	mes (COs):
Upon successfi	al completion of this course, the student will be able to:
1EEPE414_1	Choose appropriate tools and accessories for Electrical Installation, Testing & Maintenance and safety measures.
1EEPE414_2	Identify electric accidents and artificial respiration methods.
1EEPE414_3	Describe laying methods of underground cables and tools used for installation.
1EEPE414_4	Classify methods of Electrical Installation, Testing & Maintenance for electrical equipment.
1EEPE414_5	Summarize common troubles in electrical machines, Transmission and Distribution System, Transformers & Grid Substations.
1EEPC414_6	Outline earthing system for electrical installations and trouble-shooting charts.

Course	Contents:	
Unit 1	Safety Measures & Prevention of Accidents Concept of electrical safety, electrical accidents, its causes & preventions. Safety signs and symbols used in industry. Electrical shocks and factors affecting the severity of it, method of rescuing electrocuted person & different methods of artificial respiration. Electrical safety as per I.E. Rules 1956. Do's & Don'ts regarding safety while working on electrical installations. Precautions to be taken to avoid fire due to electrical reasons, operation of fire extinguishers, types of fire extinguishers.	10 Hrs.
Unit 2	Installation of Transmission and Distribution Lines: Ejection of steel structures, connecting of jumpers, tee-off points, joints and dead ends: crossing of roads, streets, power/telecommunication lines and railway crossings clearances; earthing of transmission lines and quarding species.	
Unit 3	Underground Cables: Types of cables as per material used, Inspection on Arrival of underground cable, cable handling equipment's, methods of laying underground cable, causes of cable fault, cable joints and terminations, testing and commission	08 Hrs.

HOD-Electrical

Dean Academics

Director

Executive Director

B- Tech- 8/e-34/39

Unit 4	Testing of Electrical Machines and Transformer Objectives of testing. Roles of Bureau of Indian Standards (BIS) in testing of electrical equipment's. Types of tests: Routine, type, supplementary & special. Concepts of tolerances. Tolerances for rotating machines. Testing of three-phase Induction motor. Testing of single-phase induction motor. Tolerances for power transformers, testing of transformer- Routine tests Type tests and Special tests. BDV test of transformer oil.	
Unit 5	Maintenance of Electrical Machines: Concept of maintenance, types of maintenance, Routine, preventive & breakdown maintenance. Causes of failure of electrical machines. Preventive maintenance Advantages, Procedure for developing preventive maintenance, schedules for electrical machines. Factors affecting preventive maintenance schedules. Identification of different types of faults developed such as mechanical, electrical and magnetic faults due to poor maintenance. Maintenance schedules of the following as per I.S.S. Single phase & three phase Induction motors	08 Hrs.
Unit 6	Maintenance of Transformers: Transformer maintenance Checking of insulation resistance, transformer oil level and, measurement of earth resistance. Common Troubles in Electrical Equipment's and Machines: Preparation of trouble shooting charts for D.C. Machines, AC Machines, Transformers Earthing: Importance of earthing, Difference between installation earthing & system grounding, Types of earthing, Earthing resistance values for different types of installations, Factors affecting earth resistance, Methods of reducing earth resistance, Provision of earthing as per I.E. rule-61 & I.E.rule-90	10 Hrs.

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1.	Installation commissioning & maintenance.	Tarlok singh	Katariya & sons.	Second	2002
2.	Preventive Maintenance of Electrical Apparatus	SK Sharotri, Katson	Publishing House Ludhiana	Sixth	2013
3.	Testing, Commissioning Operation and Maintenance of Electrical Equipment	S Rao, Khanna	Technical Publication, New Delhi.	Third	2006
4.	Electrical Workshop	R. P. Singh	I K International Publishing House	Third	2012

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tech-81e-35/39

Sant Dnyaneshwar Shikshan Sanstha's

Annasaheb Dange College of Engineering and Technology, Ashta An Autonomous Institute Department of Electrical Engineering

Refe	Reference Books:					
Sr. No	Title	Author	Publisher	Edition	Year of Edition	
1.	Operation & Maintenance of Electrical Equipment's Vol-I & II	B.V.S. Rao	Media promoters and publisher Ltd. Mumbai	First	1967	
2.	Electrical Power Equipment Maintenance and Testing.	Paul Gill	CRC press	Second	2011	
3.	Testing & Maintenance Of Electrical Machines	B P Patil	Technical Publication	Second	2011	
4.	Electrical Systems Design	M.K. Giridharan	I K International Publishing House Pvt. Ltd	First	2010	

HOD-Electrical

D'Electrical Dean Academics

Director

Executive Director

B-Tech- Ele-36/39

Class	B.Tech. Semester - VIII
Course Code and Course Title	1EEPE415, HVDC Systems
Prerequisite/s	1EEPC303, 1EEPC305, 1EEPC308
Teaching Scheme: Lecture/Tutorial	04/00
Credits	04
Evaluation Scheme: ISE I / MSE / ISE II / ESE	10/30/10/50

Course Outco Upon successfi	mes (COs): al completion of this course, the student will be able to:
1EEPE415_1	Develop the concepts of High Voltage Direct Current Systems and HVDC Converters
1EEPE415_2	Analyze voltage & current characteristics for converters and relate with HVDC systems.
1EEPE415_3	Demonstrate the over voltage protection and fault clearing technology in HVDC system.
1EEPE415 4	Analyze the harmonics generated by the converters and role of filters.
1EEPE415 5	Describe the reactive power requirement in HVDC systems.
1EEPE415_6	Illustrate the MTDC system configurations and HVDC light.

Course	Contents:	
Unit 1	General Background: Trends in transmission Voltages, Hierarchical Levels in transmission and distribution, Standard rated voltage of EHV-AC and HVDC, General aspects HVDC Transmission: Constitution of EHVAC and DC links, Kinds of DC links, HVDC projects in India and abroad, limitations and advantages of HVDC transmission over EHVAC, Layout of HVDC station. Deep Hole Ground Electrode, Electrolytic Corrosion, factors for General Design of Electrodes.	10 Hrs.
Unit 2	Grid Control and Characteristics: Grid control of thyristor, valve-Analysis with grid control with no overlap, overlap less than 60° and overlap greater than 60°. Basic means of control, Power reversal, manual control and its limitations-constant current versus constant voltage Control, desired features of control, actual control characteristics-constant minimum ignition angle, current and extinction angle controls –power control and current limits. Voltage Dependent Current Limiter (VDCOL), Comparison of Converters - CSC & VSC systems.	10 Hrs.
Unit 3	Protection: Disoperation of converters-short circuit on a rectifier – commutation failure, causes and remedies – Protection of HVDC system, d.c. rectors, damper circuits, Over current protection and over-voltage protection, clearing fault and reenergizing the line.	08 Hrs.
Unit 4	Harmonics and Filters: Characteristic and uncharacteristic harmonics-causes, consequences and suppression-Troubles caused by harmonics, Harmonic filters- Types, Location, series or shunt, sharpness of tuning, Quality Factor Q for L, C & RLC filter.	09 Hrs.

HOD-Electrical

Dean Academics

Director

Executive Director

B-Tesh-Ele-37/39

Unit 5	Reactive Power Compensation: Reactive Power Requirement of HVDC Converter- reactive Power balance in HVDC substations-Effect of angle of advance and extinction angle on reactive power requirement of converters.	09 Hrs.
Unit 6	Multi-terminal DC Systems & HVDC Light: Introduction, Configurations and Types of MTDC Systems, Control and Protection of MTDC Systems Configurations and Types of MTDC Systems, Reversal of Power in MTDC System, Comparison between MTDC and AC Interconnections HVDC Light: Introduction to VSC transmission & Structure, Introduction to HVDC light technology	10 Hrs.

Sr. No	Title	Author	Publisher	Edition	Year of Edition
1	EHVAC and HVDC Transmission Engineering and Practice	S. Rao	Khanna Publication	Second	2008
2	HVDC power transmission systems	K R Padiyar	New Age International (p)Ltd	Third	2014
3	Direct Current Transmission	Edward Wilson Kimbark	Wiley publication Inter Science	First	1971
4	HVDC Transmission	S Kamakshaiah, V Kamaraju	Mc Graw Hill	Second	2020

Reference Books:							
Sr. No	Title	Author	Publisher	Edition	Year of Edition		
1	Power System Stability and Control	P. Kundur	Mc Graw Hill, Inc.	Second	2008		
2	HVDC Transmission	J. Arrillaga	Wiley publication Inter science	First	2007		
3	High Voltage Direct Current Transmission: Converters, Systems and DC Grids	Dragan Jovcic, Khaled Ahmed	Wiley publication	Second	2019		
4	HVDC Transmission	SIA	SIA Publishers & Distributors Pvt Ltd	Latest 20-21 Edition	2021		

HOD-Electrical

Dean Academics

Col

Executive Director

B. Tech-Ele-38/39

Sant Dnyaneshwar Shikshan Sanstha's Annasaheb Dange College of Engineering and Technology, Ashta

An Autonomous Institute Department of Electrical Engineering

Class	B. Tech. Semester - VIII
Course Code and Course Title	1EEPR458, Project Phase II / Internship
Prerequisite/s	-
Teaching Scheme: Lecture/Practical/Tutorial	00/16/00
Credits	08
Evaluation Scheme: ISE / ESE	100/100

Course Outco After successfu	mes (COs):- l completion of this course, the student will be able to,			
1EEPR458_1	Apply the knowledge of engineering and science to demonstrate the understanding relevant to the previous work.			
1EEPR458_2	Develop the hardware/software solution to the problem determined with concerns of societal, environmental and Industrial needs.			
1EEPR458_3	Apply the knowledge and skills to do analyzing and interpretation of data for the testing and control the designed electrical systems.			
1EEPR458_4	Function effectively as an individual or as a team to understand the engineering			
1EEPR458_5	Solve complex engineering activities, write effective reports and documentation, and make effective presentations.			
1EEPR458_6	Engage in independent and life-long learning in the broadest context of technological change.			

Course Contents:	
The assembly of components shall be done in project phase II. The testing shall be completed and necessary changes, if required shall be made.	
Demo: The project should be presented before the external examiner in working condition along with documents.	42 Hrs.
Report writing	15 Hrs.
Participation in state/ National level project competition. A journal/conference paper published/ presented on project work is expected. The project batch shall be eligible to get more than 80% of marks in term work/ external examination if above conditions are satisfied.	15 Hrs.

COs correlated with Psychomotor and Affective domains will be assessed at the end of semester through various rubrics based on student's performance throughout the semester.

Assessment Tools: External OE, Project Phase-II Assessment Rubrics

HOD-Electrical

Dean Academics

Director