Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Vision & Mission of Institute Vision: To be a Leader in preparing professionally competent engineers Mission: We, at Annasaheb Dange College of Engineering and Technology, Ashta, are committed to achieve our vision by • Imparting effective outcome based education. Preparing students through skill oriented courses to excel in their profession with ethical values. Promoting research to benefit the society. Strengthening relationship with all stakeholders. **Vision & Mission of Department** Vision: To be a leader in developing electrical engineering graduate with knowledge, skill & ethics. Mission: We, at department of electrical Engineering, are committed to achieve our vision by, Facilitating learning through outcomes based education Cultivating Skills & attitude among graduates to excel in their career Strengthening relationship with all stakeholders for continues improvement

Head of Department Head Electrical Engineering Department ADCET, Ashta

Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Program Educational Objectives (PEOs) The graduates of the Department of Aeronautical Engineering at ADCET, Ashta will be able to, PEO 1: Domain Knowledge:- Solve related problems using Electrical Engineering principles, tools and practices. PEO 2: Core Competency:- Become a practicing Engineer in diversified fields of Electrical Engineering. PEO 3: lifelong learning:-Engage in lifelong learning for effective adaptation to technological challenges.

Head of Department

function professionally in competitive environment.

Professionalism :-Demonstrate leadership skills at workplace and

Head
Electrical Engineering Department
ADCET, Ashta

Annasaheb Dange College of Engineering and Technology Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University,

Kolhapur)

Department of Electrical Engineering

	Program Outcomes (POs)
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and stainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to ones own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Annasaheb Dange College of Engineering and Technology

Ashta, Dist: Sangli-416301 (An Autonomous Institute Affiliated to Shivaji University, Kolhapur)

Department of Electrical Engineering

Program Specific Outcomes (PSOs)

PSO 1 Ability to apply electrical engineering knowledge, skills for testing, control & maintenance of electrical systems such as Machines, Power Systems, Drives & Automation

Ability to identify problems in the diversified areas of Electrical Engineering and determine the hardware or software solutions to support the Societal, Environmental & Industrial needs.

Head of Department

Head
Electrical Engineering Department
ADCET, Ashta

Annasaheb Dange College of Engineering and Technology, Ashta

Curriculum Structure (Autonomous)

M. Tech.
ELECTRICAL POWER SYSTEM
SEM I – SEM IV

(To be implemented from Academic Year 2017-18 onwards)

Teaching and Evaluation Scheme

M. Tech Electrical Power System: I Semester

					,	Evaluation Scheme					
Course		T	eac	hing	Scheme		1	Theory (Marks)		actical Iarks)	
Code	Course	L	Т	P	Credits	Scheme	Max	Min. for Passing	Max	Min. for Passing	
	Advanced					ISE	20				
	Computer					MSE	30	10			
0EEPS501	Methods in Power Systems	3	1		4	ESE	50	40			
	Advanced					ISE	20	40			
0EEPS502	Power System	3			3	MSE	30	40			
	Protection	3			3	ESE	50	-			
	Application					ISE	20				
00000000	of Power					MSE	30	40			
0EEPS503	Electronics with Smart Grid	3	1		4	ESE	50	40			
	Extra High		1		4	ISE	20	40			
0EEPS504	Voltage AC	3				MSE	30	40			
	Transmission		1			ESE	50				
	Power					ISE	20				
0EEPS505	System					MSE	30				
OLLI 5505	Dynamics and Stability	3	1		4	ESE	50	40		-	
	Power					ISE			25	10	
0EEPS551	Systems Lab-			4	2	ESE		POE	50	20	
0EEPS552	Advanced Power System Protection			2	1	ISE	*		25	10	
Audit Cours											
0EEPS506	Energy Audit	4						GRADE			
	Total		4	06	22		500		100		
	Total Contact	Hou	irs/	Weel	c: 29 hrs						

HOD Electrical

Dean Academic

Principal

Annasaheb Dange College of Engineering and Technology, Ashta Department of Electrical Engineering M. Tech. (Electrical Power System) Teaching and Evaluation Scheme

M. Tech Electrical Power System: II Semester

					incar i owe	Evaluation Scheme					
Course	Course	T	eacl	hing	Scheme		Theory (Marks)		Practical (Marks)		
Code	Course	L	T	P	Credits	Scheme	Max	Min. for Passing	Max	Min. for Passing	
	Power System				4	ISE	20				
0EEPS507	Planning and	3	1		4	MSE	30	40			
	Reliability					ESE	50				
	High Waltage					ISE	20	40			
0EEPS508	High Voltage	3			3	MSE	30	40			
	Engineering	3		-	3	ESE	50				
	Power System					ISE	20	. 40			
0EEPS509	Operation and	3	1		4	MSE	30	40			
	Deregulation	3	1		4	ESE	50				
0EEPS510		3				ISE	20	40			
To	Elective-I		1		4	MSE	30				
EEPS512		3	1		*	ESE	50				
0EEPS513						ISE	20				
To	Elective-II	3	1		4	- MSE	30	40			
0EEPS515		3	1		4	ESE	50	40			
0EEPS553	Power Systems					ISE			50	20	
OEEI 3333	Lab-II			4	2	ESE		POE	50	20	
0EEPS554	High Voltage Engineering			2	1	ISE	-		50	20	
0EEPS555	Seminar II			2	1	ISE			50	20	
Audit Cours	e										
0EEPS516	Research Methodology	2						GRADE			
	Total	17	4	8	23		500		200		
	Total Contac	et Ho	urs	We	ek: 29hrs					*	

Course Code	Elective-I	Course Code	Elective-II
0EEPS510	Electrical Power Quality and Harmonics	0EEPS513	Flexible AC Transmission and High Voltage DC System
0EEPS511	Supervisory Control and Data Acquisition & Automation	0EEPS514	Power System Optimization Techniques
0EEPS512	Real Time Control of Power Systems	0EEPS515	Power System Transient Analysis

HOD Electrical

M. Tech. (Electrical Power System)

Teaching and Evaluation Scheme

M. Tech Electrical Power System: III Semester

						Evaluation Scheme			
Course	Course	Г	eac	hing	Scheme	C-1	Practical (Marks)		
code	Course	L	T	P	Credits	Scheme	Max	Min for Passing	
0EEPS651	Dissertation Phase I				5	ISE	50	20	
0EEPS652	Dissertation Phase II			5**	10	ISE	50	20	
OEEF3032	Dissertation Fliase II				10	ESE	100	40	
	Total			5	15		200		
	Total Con	tact	Hou	rs/We	eek: 5 hrs				

M. Tech Electrical Power System: IV Semester

Course						Evaluation Scheme											
	Course	I	eac	hing	Scheme	C-1	Practical (Marks)										
code	Course	L	T	P	Credits	Scheme	Max	Min for Passing									
0EEPS653	Dissertation Phase III				10	ISE	100	40									
0EEPS654	Dissertation Phase IV			5**	5**	5**	5**	5**	5**	5**	5**	5**	5**	10	ISE	100	40
OEEF 3034	Dissertation Phase IV				10	ESE	100	40									
							•										
	Total			5	20	-	300										
1	Total Con	tact	Hou	rs/We	eek: 5 hrs												

** Indicates: 1) Faculty contact hours per student per/ week

2) Student working Hours: 30 Hrs/Week

Total number of Credits: 80

HOD Electrical

Dean Academic

Principal

M. Tech Electrical Power System: I Semester

Course Details:

Class	M. Tech, SemI
Course Code and Course Title	0EEPS501, Advanced Computer Methods in Power Systems
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/1
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:
01	To understand the concept of network topology.
02	To analyze power networks by different methods for formation of admittance matrices.
03	To analyze power networks by different methods for formation of impedance matrices.
04	To understand concept of power flow study and study different numerical methods for power flow solution.
05	To discuss simultaneous faults in power networks.
06	To understand two component method to obtain the results in case of various faults on the power system.

Course Outco Upon success:	omes (COs): ful completion of this course, the student will be able to:
0EEPS501_1	Develop various network Matrices (Cognitive Level 6)
0EEPS501_2	Apply different methods to write admittance matrices of power network. (Cognitive Level 3)
0EEPS501_3	Use different methods to develop impedance matrices of power network. (Cognitive Level 3)
0EEPS501_4	Explain algorithm of different numerical methods used for power flow solution. (Cognitive Level 2)
0EEPS501_5	Develop two port networks parameters equations in case of simultaneous faults. (Cognitive Level 6)
0EEPS501_6	Apply two component methods to obtain the results in case of various faults on the power system. (Cognitive Level 3)

Course	Contents:	entineed central at a
Unit 1	Network Topology Introduction, Basic Principles in Power System Analysis, Elementary Graph Theory, Incidence Matrices, Connectivity, Primitive Network, Numerical Treatment Expected	06 Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

	Till Teem (Electrical Lower S)	Secial
Unit 2	Computer Solution Methods Using the Admittance Matrix Introduction, Formation of YBUS by Singular Transformation, Non- singular Transformation, inspection- Modeling of transmission lines, Modeling of transformer, Modeling of shunt elements, Modeling of loads, Modeling of generator internal impedance, Step by Step Algorithm for Formation of YBUS, Numerical treatment expected	09 Hrs.
Unit 3	Computer Solution Methods Using the Impedance Matrix Impedance matrix in shunt fault computations, impedance matrix algorithm, adding a radial impedance to the reference node, adding a radial branch to a new node, closing a loop to the reference, closing a loop not involving the reference, adding a mutually coupled radial element, adding a group of mutually coupled lines, comparison of admittance and impedance matrix techniques, Numerical treatment expected	
Unit 4	Computer techniques for Load flow analysis Introduction, Impact of computers, orientation of engineering problems to computers, Power Flow equation, Classification of buses, Operating constraints, Data for load flow, Bus Classification, Modelling for Load Flow Studies, Gauses - Seidel Iterative Method, Newton - Raphson Method-Rectangular Coordinates Method, The Polar Coordinates Method, Sparsity of Network Admittance Matrices, Decoupled Methods, Fast Decoupled Methods, Load Flow Solution Using Z Bus, Comparision of Various Methods for Power Flow Solution.	06 Hrs.
Unit 5	Simultaneous Faults Simultaneous Faults by Two-Port Network Theory- Two port networks, interconnection of two port networks, simultaneous fault connection of sequence networks, series-series connection (Z-type faults), Parallel - parallel connection (Y-type faults), series-parallel connection (H-type faults), Simultaneous faults by matrix transformations- constraint matrix for Z-type faults, constraint matrix for Y-type and H-type faults, Numerical treatment expected.	07 Hrs.
Unit 6	Analytical Simplifications Two Component Method Shunt Faults- SLG Fault, LL Fault, DLG Fault, Three phase fault, Series Faults- 2LO Fault, 1LO Fault, Change in symmetry with two component calculations- phase shifting transformer relations, SLG faults with arbitrary symmetry, DLG faults with arbitrary symmetry, series faults with arbitrary symmetry.	07 Hrs.

Text Books:				
Sr. No	Title	Author	Publisher	
01	Circuit Theory (Analysis and Synthesis)	A. Chakrabarti	DhanpatRai& Co	
02	Advanced Power System Analysis & Dynamics	L.P. Singh	New Age International Publishers	

HOD Electrical

Designation

Principal

Text	Text Books:		
Sr. No	Title	Author	Publisher
03	Power System Analysis	Grainger, J.J. and Stevenson, W. D.	Tata McGraw-Hill Edition
04	Computer Techniques and Models in Power Systems	K. Uma Rao	I.K. International Publishing House Pvt Ltd

Sr. No	Title	Author	Publisher
01	Analysis of Faulted Power Systems	Paul.M. Anderson	IEEE Press Power Systems Engineering Series
02	Circuits Analysis of A,C. power system VOL-II	Edith Clarke	J. Wiley & sons, Incorporated, 1950
03	Introduction to Matrices & Power System	R.Bruce Shipley	Wiley Eastern Ltd
04	Computer methods in Power System Analysis	Stagg G.W. & E.L. Abiad	McGraw-Hill
05	Operation and Control in Power Systems	Prof. P. S. R. Murty	B.S. Publications

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech, SemI
Course Code and Course Title	0EEPS502, Advanced Power System Protection
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/0
Credits	03
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cours	e Objectives:
01	To introduce students to digital power system protection
02	To teach students basic terminology regarding digital protection
03	To teach students the advanced techniques for various power system protection conditions
04	To enhance student's knowledge of various advanced relays.
05	To develop an ability and skills to design the feasible protection systems
06	To develop student's research ability in fundamental things needed for digital protection

Course Outo	
Upon success	sful completion of this course, the student will be able to:
EEPS502_1	Describe modern protection schemes like applications of microprocessor based relays for the protection of the power system equipment(3 rd cognitive level)
EEPS502_2	level)
EEPS502_3	Choose appropriate comparator for different protection schemes for various power system conditions (3 rd cognitive level)
EEPS502_4	Explain relay coordination to achieve reliability in advanced protection scheme (2 nd cognitive level)
EEPS502_5	Explain appropriate differential scheme for various machines (2 nd cognitive level).
EEPS502_6	To design suitable digital protection scheme for distance protection (6 th cognitive level)

Course	Contents:	
Unit 1	Introduction to Digital Relay: Introduction, Basic Components of Digital Relays with block diagram advantages of microprocessor technology, microprocessor applications to protection	04 Hrs.
Unit 2	Current and Voltage Transformers: Introduction, current transformers, equivalent circuits, transient performance, modeling for transient simulation, use of mimic impedance, voltage transformers, VT model, modeling for transient simulation, wound voltage transformers, relay performance, dynamic compensation for CTs and PTs, compensating	06 Hrs.

HOD Electrical

Dean Academic

Principal

	algorithms for CTs and dynamic compensation of CTs, analysis of simulation results. Study of electromagnetic CT & PT, Steady state & Transient state analysis of CVT, Study of residual voltage transformer, natural CT, Mixing Transformer, summation transformer, Optical CT		
Unit 3	Comparator: Characteristic & study of different types of two input phase & amplitude Comparator, Study of multi input comparator	05 Hrs.	
Unit 4	Coordination of Inverse Definite Minimum Time (IDMT)/Directional Over Current (DOC) Relays in an Interconnected Power System Network: Plug setting, time setting, radial feeder and ring mains protection, earth fault and phase fault, Directional relay, and microprocessor based o/c relay, Protection of an interconnected system, relay coordination	06 Hrs.	
Unit 5	Auto-reclosing and Differential Protection Introduction, history of auto-reclosing, advantageous of auto-reclosing, classification of auto-reclosing, circulating current and opposed voltage principles, percentage differential relay, line protection, carrier aided protection scheme.		
Unit 6	Protection of Power System Components: Introduction, bus bar protection, digital protection schemes for bus bars, digital protection schemes for generators a) Transformer Protection: Introduction, digital techniques for protection of transformers, harmonic restraint percentage differential protection, voltage restraint technique, flux restraint approach. b) Distance protection: Impedance, reactance and admittance characteristics, relay settings for 3-zone protection, out of step blocking scheme, blinder relay, numerical relays for transmission line protection, microprocessor based impedance, reactance and mho relays & digital techniques for distance protection.	09 Hrs.	

Text Books:			
Sr. No	Title	Author	Publisher
01	Switchgear and protection	U A Bakshi M V Bakshi	Technical Publication
02	Power System protection and Switchgear	Badri Ram, Vishwakarma,	Tata McGraw Hill

HOD Electrical

Dean Academic

Principal

Sr. No	Title	Author	Publisher
01	Digital Protection of Power Systems	K. Parthasarathy	ISTE WPLP Learning Material Series, Indian Society for Technica Education, Bangalore
02	Fundamentals of Power system Protection	Paithankar Bhide	PHI Learning
03	Power System Protection – Static Relays	T.S. Madhava Rao	TMH Publication

HOD Electrical

Dean Krademic

Principal

Course Details:

Class	M. Tech., SemI
Course Code and Course Title	0EEPS503, Application of Power Electronics with Smart Grid
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/1
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:
01	To introduce various aspects of the smart grid, including technologies, components, architectures and applications
02	To teach the power electronics devises in smart grid
03	To discuss issues and challenges involved in smart grid
04	To discuss communication and information technology in smart grid
05	To discuss Energy Storage devices
06	To explain concepts of Micro-grid

Course Outco	omes (COs):	
Upon successi	ful completion of this course, the student will be able to:	
0EEPS503_1	Understand the various aspects of the smart grid, including technologies, components, architectures and applications. (Level-2)	
0EEPS503_2	Evaluate Power Electronics devices like Multilevel Inverter in Smart Grid. (Level-5)	
0EEPS503 3	Judge the issues and challenges involved in smart grid. (Level-5)	
0EEPS503_4	Conclude the role of communication and information technology in smart grid. (Level-5)	
0EEPS503_5	Explain various Energy Storage devices. (Level-4)	
0EEPS503_6	Evaluate concepts of micro-grid. (Level-5)	

Course	Contents:	
Unit 1	Introduction to Smart Grid: Concept, definitions, difference between conventional and smart grid, challenges in smart grid implementation, Overview of the technologies required for the Smart Grid	06 Hrs.
Unit 2	Power Electronics in Smart Grid: Introduction, Multilevel Inverter (MLI) Concept, Types of Multilevel Inverters, Diode-Clamped Multilevel Inverter, Flying-Capacitor Multilevel Inverter, Cascade Multilevel Inverter, Applications, Switching Device Current, DC-link Capacitor Voltage Balancing, and Comparisons of Multilevel Inverters.	07 Hrs.
Unit 3	Renewable energy integration: Carbon Footprint, Renewable Resources: Wind and Solar, Micro-grid Architecture, Modeling PV and wind systems,	07 Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

	Tackling Intermittency, Issues of interconnection, protection & control of micro-grid, Islanding	
Unit 4	Smart Distribution Systems and Energy Storage: Introduction to Smart Meters, Real time pricing, Smart appliances, Automatic meter reading(AMR), Demand response, Energy Storage Technologies: Batteries, Fuel Cell and Hydrogen electrolyser, Flywheels, Superconducting magnetic energy storage systems, super capacitors	07 Hrs.
Unit 5	A brief history of EV &PHV, Basics of EV & HEV, Architectures of EV & HEV, HEV fundamentals. Vehicle-to-grid technology	
Unit 6	Micro-grids: Concept of micro-grid, need and applications of micro-grid, formation of micro-grid, Issues of interconnection, protection and control of micro-grid. Plastic and Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, micro turbines, Captive power plants, Integration of renewable energy sources	07 Hrs.

Text I	Text Books:			
Sr. No	Title	Author	Publisher	
01	Smart Grid: Technology and Applications	JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama	Wiley	
02	Power Electronics Circuits, Devices, and Applications	Muhammad H. Rashid	Pearson Publication	

Refer	Reference Books:			
Sr. No	Title	Author	Publisher	
01	Smart Grid: Fundamentals of Design and Analysis	James Momoh	IEEE Press Series on Power Engineering	
02	Integration of Green and Renewable Energy in Electric Power Systems	Ali Keyhani, Mohammad N. Marwali, Min Dai	Wiley	
03	Recent literature on Smart Grid			

HOD Electrical

Course Details:

Class	M. Tech, Sem. – I	
Course Code and Course Title	0EEPS504, Extra High Voltage AC Transmission	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial	3/1	
Credits	4	
Evaluation Scheme: ISE / MSE / ESE	20/30/50	

Cour	se Objectives:	
01	To introduce EHVAC transmission system.	
02	To apply voltage gradient calculation and corona in EHVAC lines.	
03	To analyze travelling waves on EHVAC transmission line.	Page 1
04	To propose over voltages occurring in EHVAC lines.	
05	To design insulation for different over voltages.	
06	To design EHVAC lines and propose EHV cables.	

Course Outc	omes (COs):		
Upon success	ful completion of this course, the student will be able to:		
0EEPS504_1	Describe the basics of EHVAC transmission lines & determine parameters. (3 rd cognitive level)		
0EEPS504 2	Determine the voltage gradient on conductor. (3 rd cognitive level)		
0EEPS504_3	Explain about travelling waves and analyze EHVAC lines. (4th cognitive level)		
0EEPS504_4	Apply the over voltages knowledge, their causes in EHVAC. (3 rd cognitive level)		
0EEPS504_5	Explain lightning phenomena & design insulation system for lightning (5 th cognitive level)		
0EEPS504_6	Design EHVAC lines.(5 th cognitive level)		

Course	Contents:	
Unit 1	Introduction to EHVAC transmission: Role of EHVAC transmission, standard transmission voltage, average values of line parameters, power handling capacity, line loss, cost of transmission line, mechanical considerations of line performance, resistance of the conductor, temperature rise, inductance & capacitance calculations	06 Hrs.
Unit 2	Voltage Gradients Corona: Charge potential relations for multi-conductor relations, surface voltage gradients on conductor, distribution of voltage gradient on sub conductor of bundle. I^2R & corona loss, corona loss formula, charge voltage diagram with corona, Attenuation of travelling waves due to the corona loss, audible noise; corona pulses, their generation & properties, limits for radio	07 Hrs.

HOD Electrical

Dear Academic

Principal

M. Tech. (Electrical Power System)

	interference fields, CIGRE formula, RI excitation function	
Unit 3	Travelling waves:	07Hrs.
	Introduction, Differential equation & solution for general case, Standing Waves & natural frequency, Open ended line, Double exponential	
	response, Response to the sinusoidal excitation, Line energization with trapped charge voltage, Reflection & refraction of traveling waves.	
Unit 4	Over voltages in EHV Lines by switching operations & Over voltages	08 Hrs
	at power frequency:	
	Introduction to switching over voltages, recovery voltage & circuit breakers, over voltage due to interruption of low inductive current & capacitive currents Ferro resonance over voltage & calculation of switching surges & single phase equivalents.	= **
	Generalized constants, charging currents, power circle diagram & its use, voltage control, shunt & series compensation, sub synchronous resonance in series capacitor compensated line & static reactive compensating system.	•
Unit 5	Lightning & Insulation coordination:	06 Hrs.
	Lightning introduction, general principles of lightning protection problem, Tower footing resistance, Lightning arresters.	,1
	Insulation levels voltage withstand levels of protected equipment & Insulation co-ordination based on lightning	
Unit 6	Design of the EHVAC lines & EHV cable transmission:	06 Hrs.
	Introduction, design factor under steady state, design examples steady state, any one example	ov mis.
	Introduction to EHV cable, EHV cable electrical properties, cable insulating material properties, design basics of cable insulation, gas insulated EHV lines	-

Text Books:				
Sr. No	Title	Author	Publisher	
01	EHVAC transmission Engineering	R. D. Begamudre	New Age international	
02	EHVAC & HVDC Transmission Engg. &Design	S. Rao	S.V. Rao	
03	Power Transmission System Engg. Analysis & Design	Turon Gonen	John Wiley & sons	

HOD Electrical

Course Details:

Class	M. Tech. SemI	
Course Code and Course Title	0EEPS505, Power System Dynamics an Stability	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial	03/01	
Credits	04	
Evaluation Scheme: ISE / MSE / ESE	20/30/50	

Course Objectives:		
01	Students will be able to understand Basic Concepts of dynamical system	
02	Students will be able to Model the Power System Components	
03	Students will be able to Analyze Sub-Synchronous oscillation	Alless
04	Students will be able to Analyze small signal stability of SMIB	
05	Students will be able to analysis improving voltage stability	
06	Students will be able to Analysis using digital system simulation	74

Course Outco Upon successf	omes (COs): our completion of this course, the student will be able to:
	Understand Basic Concepts of dynamical system. (Level 2)
0EEPS505_2	Evaluate the Power System Components. (Level 5)
0EEPS505_3	Analyze Sub-Synchronous oscillation. (Level 4)
0EEPS505_4	Analyze small signal stability of SMIB. (Level 4)
0EEPS505_5	Analysis improving voltage stability. (Level 4)
0EEPS505_6	Analysis using digital system simulation. (Level 4)

Course	Contents:	
Unit 1	Basic Concepts: Basic Concepts of dynamical system, formation of State space equations: Concept of Dynamic Instability, Voltage Instability, Angle Instability, Steady State & Dynamic problem in A.C. Systems.	06 Hrs.
Unit 2	Modeling of Power System Components: Synchronous machine, excitation system, prime movers, governors, Transmission lines, transformers & loads.	08 Hrs.
Unit 3	Sub-Synchronous oscillation: Turbine generator torsional characteristics, torsional interaction with power system controls, sub- synchronous resonance Analysis & counter measures using PSS.	07 Hrs.
Unit 4	Small Signal Stability: Fundamental concepts of stability of dynamic systems, Eigen properties of	07 Hrs.

HOD Electrical

Dean readenic

Principal

M. Tech. (Electrical Power System)

91	the state matrix, small signal stability of SMIB, effects of excitation system.	Stemy
Unit 5	Voltage stability: Basic concepts of voltage stability, voltage collapse, voltage stability analysis & methods of improving voltage stability.	06 Hrs.
Unit 6	Transient Instability: Analysis using digital simulation, Analysis using energy function, Study of various numerical methods, Fix step method, Variable step method.	08 Hrs.

Text	Books:		9
Sr. No	Title	Author	Publisher
1.	Power System Stability & Control	P. Kundur	New Age
2.	Power System Dynamic and Stability	C. W. Taylor	Willey

	Reference Books:		
Sr. No	Title	Author	Publisher
1.	Power System Voltage Stability	K. R. Padiyar	New Age
2.	Power System Stability & Control	P. M. Anderson Fauad	Tata Macro hili

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech Sem.I
Course Code and Course Title	0EEPS506, Energy Audit and Management
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	04/00
Credits	00
Evaluation Scheme: ISE / MSE / ESE	Grade

	e Educational Objectives(CEOs): ourse aims to:
01	Understand importance of energy and energy security.
02	Understand impact of use energy resources on environment and emission standards, different operating frame work.
03	Follow format of energy management, energy policy.
04	Learn various tools of Demand Control.
05	Calculate economic viability of energy saving option

Course Outco	omes (COs):	
Upon successf	ful completion of this course, the student will be able to:	
0EEPS506_1 Explain overall Energy Scenario (Cognitive Level 2)		
0EEPS506_2	Identify various forms of Energy (Cognitive Level 1)	
0EEPS506_3	Explain basics of Energy Auditing and instruments for energy audit (Cognitive Level 2)	
0EEPS506_4	Analyze various parameter of audit for different systems (Cognitive Level 4)	
0EEPS506_5	Understand concept of demand side management (Cognitive Level 2)	
0EEPS506_6	Implement work with economic feasibility(Cognitive Level 4)	

Course	Contents	
Unit 1	Energy Scenario Commercial and Non-Commercial Energy, Primary Energy Resources, Commercial Energy Production, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy and Environment, Air Pollution, Climate Change, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features.	6Hrs.
Unit 2	Basic of Energy and its various forms Electricity basics - DC & AC currents, Electricity tariff, Load managemen and Maximum demand control, Power factor. Thermal basics -Fuels, Thermal energy contents of fuel, Temperature & Pressure, Heat capacity, Sensible and Latent heat, Evaporation,	6Hrs.

HOD Electrical

Denn Readenic

Principal

	C. 1. C.	
	Condensation, Steam, Moist air and Humidity & Heat transfer, Units and conversion.	
Unit 3	Energy Management & Audit Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments	3
Unit 4	Energy Conservation in Applications Motive power (motor and drive system). b) Illumination c) Heating systems (boiler and steam systems) c) Ventilation(Fan, Blower, Compressors) and Air Conditioning systems d) Pumping System e) Cogeneration and waste heat recovery systems f) Utility industries (T and D Sector)g) Diesel generators	8Hrs.
Unit 5	Demand Management Supply side management (SSM), various measures involved such as use of FACTS, VAR Compensation, Generation system up gradation, constraints on SSM. Demand side management (DSM), advantages and Barriers, implementation of DSM, areas of development of demand side management in agricultural, domestic and commercial consumers. Demand management through tariffs (TOD). Power factor penalties and incentives in tariff for demand control. Apparent energy tariffs. Role of renewable energy sources in energy management, direct use (solar thermal, solar air	10Hrs.
Unit 6	Financial Management and Case Studies Investment-need, Appraisal and criteria, Financial analysis techniques-Simple payback period, Return on investment, Net present value, Internal rate of return, Cash flows, Risk and sensitivity analysis; Financing options, Energy performance contracts and role of ESCOs Energy audit case studies such as IT sector, Textile, Municipal corporations, Educational Institutes, T and D Sector and Thermal Power stations.	6 Hrs.

Text Books:			
Sr. No	Title	Author	Publisher
01	Energy Management, Audit and Conservation	Barun Kumar de	Vriand Publication

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

Sr. No	rence Books: Title	Author	Publisher
1	Success stories of Energy Conservation	Bureau of Energy Efficiency	Bureau of Energy Efficiency
2	Energy Management	W.R. Murphy and Mackay	Reed Elsevier India Private Limited
3	Energy Auditing made simple	Balasubramanian	Bala Consultancy Services
4	Utilization of electrical energy	S.C. Tripathi	Tata McGraw Hill
5	Generation and utilization of Electrical Energy	B.R. Gupta	S. Chand Publication

HOD Electrical

Course Details:

Class	M. Tech, SemI	
Course Code and Course Title	0EEPS551, Power System Lab-I	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial/Practical	0/0/4	
Credits	02	
Evaluation Scheme: ISE / ESE	25/50	

	e Educational Objectives(CEOs): ourse aims to:
01	To allow students to practically verify several concepts and procedures learned in power system analysis.
02	To develop hands-on experience of how certain procedures of power system operation are carried out.
03	To Understand the performance of transmission line parameter with help of MATLAB ETAP and Power World Simulator.
04	To carry out system studies using power systems analysis software to assess system operation in steady state and under faulted conditions.

Course Outco	ful completion of this course, the student will be able to:
0EEPS551_1	Write codes for to measure electrical parameters of transmission line. (Level 6)
0EEPS551_2	Create a model in power world simulator (Level 6)
0EEPS551_3 Solve and write codes in MATLAB for load flow problem using 0 and Newton-Raphson method. (Level 6)	
0EEPS551_4	Analyze the transient performance of transmission systems. (Level 4)
0EEPS551_5	Analyze the performance of transmission line in MATLAB. (Level 4)
0EEPS551_6	Evaluate problems of power systems in ETAP (Level 5)

List of Experiments:

Sr. No	Title of Experiments
1.	MATLAB Primer
2.	Analyze the Transients on a Transmission Line
3.	Calculate Symmetrical Short Circuit on a Synchronous Machine
4.	Calculate Symmetrical Components from Unbalance Currents
5.	Calculate Unbalanced Voltages from Symmetrical Components
6.	Analyze the Transient Power-angle Curve for Synchronous Machine
7.	Calculate Equal area Criterion of power system
8.	Formulation and calculation of Y- bus matrix of a system using MATLAB.
9.	Solution of a load flow problem using Gauss-Seidal and Newton-Raphson method

HOD Electrical

Dean Academic

Principal

1	using MATLAB.
10.	Symmetrical fault analysis of a 3-bus system using MATLAB.
11.	Determination of voltages sequence using MATLAB.
12.	Power flow analysis using power world simulator
13.	Building a One-Line Diagram using ETAP
14.	Balanced and Unbalanced load flow analysis using ETAP
15.	DC Load flow analysis using ETAP
16.	Hardware Design using Ardiuno

Sr. No	Title	Author	Publisher
01	Advanced Power System Analysis & Dynamics	L.P. Singh	New Age International Publishers
02	Power System Analysis	Grainger, J.J. and Stevenson, W. D.	Tata McGraw-Hill Edition
03	Computer Techniques and Models in Power Systems	K. Uma Rao	I.K. International Publishing House Pvt Ltd

Reference Books:			
Sr. No	Title	Author	Publisher
01	Analysis of Faulted Power Systems	Paul.M. Anderson	IEEE Press Power Systems Engineering Series
02	Circuits Analysis of A,C. power system VOL-II	Edith Clarke	J. Wiley & sons, Incorporated, 1950
03	Computer methods in Power System Analysis	Stagg G.W. & E.L. Abiad	McGraw-Hill
04	Operation and Control in Power Systems	Prof. P. S. R. Murty	B.S. Publications

HOD Electrical

Dean Academic

Rincipal

Course:

Class	M. Tech, SemI	
Laboratory Course Code and Course Title	0EEPS552, Advanced Power System Protection	
Prerequisite/s		
Teaching Scheme: Practical/Tutorial	0/0/2	
Credits	01	
Evaluation Scheme : ISE	25/00	

	Educational Objectives(CEOs): ory practice aims to
1	To give practical awareness and acquaintance with construction, principle operation protective devices of the power system.
2	How to connect the relays and circuit breakers to a line.
3	To develop relay and circuit breaker settings for different conditions

Course Outco	mes (COs):
On successful	completion of laboratory practice, student will be able to,
0EEPS552_1 Interpret different Protection system components. (2 nd cognitive level)	
0EEPS552_2	Compare different protection schemes. (2 nd cognitive level)
0EEPS552_3	Illustrate of different types of circuit breakers. (3 rd cognitive level)
0EEPS552_4	Discriminate of different types of relays. (5th cognitive level)

List of Experiments

Experiment No.	Title of Experiment	
1	Drawing sheet showing construction of Circuit Breakers.	
2	Drawing sheet showing construction of generator protection schemes.	
3	Drawing sheet showing construction of Transformer protection schemes.	
4	To study electromechanical induction disc type relay	
5	To plot time/current characteristic and study of electro-mechanical over current relay.	
6 .	To plot different characteristic and study of Microprocessor over current relay	
7	Experimental study of Electromechanical over voltage relay.	
8	Experimental study of Microprocessor Based over voltage Relay.	

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

9	Experimental study of Microprocessor Based over voltage Relay.
10	Experimental study of microprocessor based IMPEDANCE Relay.
11	Introduction to Power World Software for different relay and circuit breaker settings
12	Study of relay coordination in Power World simulator
13.	Study of transient stability during faults in Power World simulator
14	Study of CT construction in detail & find out Ratio error and Phase angle error
15	Study of PT construction in detail & find out Ratio error and Phase angle error

HOD Electrical

Dean Academic

Principal

M. Tech Electrical Power System: II Semester

Course Details:

Class	M. Tech. (Electrical Power System) SemII
Course Code and Course Title	0EEPS507, Power System Planning and Reliability
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	03/01
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:	
01	To introduce the objectives of Power System Planning at Generation, Transmission and Distribution level.	
02	To know about Load Forecasting Techniques based on time horizon perspective of power system.	
03	To impart learning about Reliability concepts & Reliability models to determine power sector reliability with various techniques.	
04	To understand the criteria of Generation Planning & determination of Generation Reliability based on Generator Model.	
05	To explore the objectives of Transmission Expansion Planning and its Reliability.	
06	To learn about various concepts related to Distribution Planning and determine Distribution Reliability.	

Course Outco	omes (COs): ful completion of this course, the student will be able to:
	Evaluate various aspects of power system planning. (Level 5)
OLLI BOOT_I	
0EEPS507_2	Use the basics of load forecasting that will be useful foe engineering profession practice in the power sector operation. (Level 3)
0EEPS507_3	Understand the concepts of reliability and apply the various techniques to determine the reliability of power system operation and planning. (Level 2)
0EEPS507_4	Apply reliability models to determine the reliability of Generation, Transmission and Distribution Expansion planning. (Level 3)
0EEPS507_5	Evaluate the optimal power system model based on reliability. (Level 5)

Course	Contents:	108
Unit 1	Power System Planning:	06 Hrs.
	Introduction, Objectives of Planning, Power system elements & structure, Power system planning issues, time horizon perspectives of power system studies, Short Term Planning, Medium Term Planning, Long Term Planning, Reactive Power Planning.	ia .

HOD Electrical

Dean A cademic

Principal

to load orrelation,
orrelation,
No. 2011
d Model,
ng, Total
07 Hrs.
eries and
nains and
eliability
-
07 Hrs.
eneration
ity based
onnected
06 Hrs.
smission
y indices
08 Hrs.
g, Design
n system
ation of
audii Ul
meshed
e ii

Text Books:			
Sr. No	Title	Author	Publisher
01	Power System Planning	R.L. Sullivan	McGraw Hill International Book Co
02	Electrical Power System Planning	A.S. Pabla	Macmillan
03	Electric Power System Planning: Issues, Algorithms and Solutions	Hossein Seifi Mohammad Sadegh Sepasian	Springer
04	Power System Reliability Evaluation	Roy Billington	Gordan& Breach Scain Publishers,

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

Refe	rence Books:		
Sr. No	Title	Author	Publisher
01	Modern Power System Planning	X. Wang, J.r. McDonald	McGraw Hill Int. Ed.
02	Power Generations, Operation & Control	Allen J. Wood, B.F. Wollenberg	Wiley India, Reprint

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech, Sem.II
Course Code and Course Title	0EEPS508, High Voltage Engineering
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/0
Credits	03
Evaluation Scheme: ISE / MSE / ESE	20/30/50

	e Educational Objectives(CEOs): ourse aims to:
01	Introduce basic knowledge about High Voltage Engineering
02	Explain the concept related to ionization process and its theories
03	Explain process of breakdown in Gaseous, Liquid and Solids
04	Illustrate generation and Measurement of High Voltages and Current
05	Describe insulation Co-ordination. Over voltage phenomenon
06	Explain High Voltage Testing of Electrical Equipment

Course Outco	omes (COs): ful completion of this course, the student will be able to:
0EEPS508_1	Understand the concepts related to electrostatic field stress (Cognitive Level 2)
0EEPS508_2	Illustrate electrical breakdown in air, solid and liquid insulation (Cognitive Level 3)
0EEPS508_3	Analyze generation of High voltage and High current. (Cognitive Level 4)
0EEPS508_4	Demonstrate and analyze measurement of High voltage and High current for testing purposes (Cognitive Level 4)
0EEPS508_5	Testing and analyzing of Insulation coordination, over voltage and transient in power system (Cognitive Level 5)
0EEPS508_6	Analyze high voltage test on various electrical equipment (Cognitive Level 4)

Course	Contents	
Unit 1	Electric Stress Estimation and Control: Electrical field distribution and breakdown strength of insulating materials - fields in homogeneous, isotropic materials - fields in multi-dielectric, isotropic materials - numerical method: Finite difference method ,charge simulation method (CSM), Control of Electric Field Intensity	4Hrs
	Breakdown Mechanism of Gaseous, Liquid and Solid Materials Gases as insulating media - ionization and decay processes, Townsend first	

HOD Electrical

Dean Academic

Principal

ionization coefficient, photo-ionization, photoelectric emission, thermionic 9Hrs emission, Townsend second ionization coefficient, mechanism, Paschen's law, Liquid as insulators, breakdown in liquids - electronic breakdown, suspended solid particle mechanism, cavity breakdown, Breakdown in solids, intrinsic breakdown, streamer breakdown, electromechanical breakdown, breakdown due to treeing & tracking, thermal breakdown, solid dielectrics used in practice. Generation of high voltages and Current: Generation of high direct voltages, half and full wave rectifier circuits, Unit 3 voltage multiplier circuits, Cockcroft-Walton Voltage Multiplier Circuit 7Hrs working, Van de Graff generators, electrostatic generators, generation of alternating voltages, cascaded transformers, resonant transformers- series, parallel, impulse voltages, Standard lightning and switching surge, impulse voltage generator circuits, Analysis of circuit "a", Marx circuit, operation, impulse current generator. Measurement of high Voltages and Current: High direct voltage measurement, peak voltage measurements by Unit 4 spark gaps, sphere gaps, reference measuring systems, uniform field gaps, rod gaps, factors affecting sphere gap measurements, electrostatic voltmeters, 9Hrs generating voltmeters and field sensors, Potential Dividersfor Impulse Voltage Measurements- resistance & Capacitance voltage divider. Measurement Of High D.C., A.C. And Impulse Currents- hall generators, Rogowaski coil, Faraday Generator, the measurement of peak voltages, the Chubb-Fortescue method, Surge Recorder (Klydonograph) with Litchenberg Pattern. Transient in Power System, insulation coordination & Non-destructive insulation tests: Unit 5 Transients in simple Circuit, Capacitance Switching, Natural causes for over 7Hrs voltages, Lightning phenomenon, Overvoltage due to switching surges, system faults and other abnormal conditions, Principles of Insulation Coordination on High voltage and Extra High Voltage power systems, Measurement of d.c. resistivity, dielectric loss and Loss factor, The Partial Discharge-internal & external, Equivalent Circuit. High voltage testing of Electrical Equipment: Testing of insulators and bushings, testing of isolators and circuit breakers 6Hrs Testing of cables, testing of transformers - testing of surge diverters Unit 6

Text Books:			
Sr. No	Title	Author	Publisher
01	High Voltage Engineering	M.S.Naidu and V. Kamaraju	TMH Publications

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

Reference Books:			
Sr. No	Title	Author	Publisher
1	High Voltage Engineering: Fundamentals: E.Kuffel	E.Kuffel, W.S.Zaengl, J.Kuffel	Elsevier
2	High Voltage Engineering	C.L.Wadhwa	New Age Internationals (P) Limited
3	High Voltage Insulation Engineering	Ravindra Arora Wolfgang Mosch	New Age International (P) Limited

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech, Sem. – II	
Course Code and Course Title	0EEPS509, Power System Operation and Deregulation	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial	3/1	
Credits	4	
Evaluation Scheme: ISE / MSE / ESE	20/30/50	

Cour	se Objectives:	
01	To apply generation dispatch is optimally.	
02	To apply power flows optimally to run the system without violating constraints.	
03	To propose restructuring of power system.	
04	To apply forecasting methods to operate the system.	
05	To apply unit commitment method to run power system economic manner.	
06	To propose the different problem management method in deregulated electricity market.	

Course Outco		
Upon successf	ul completion of this course, the student will be able to:	
0EEPS509_1	Apply generation dispatch economically in power system. (3 rd cognitive level)	
0EEPS509_2	Apply power flows optimum manner. (3 rd cognitive level)	
0EEPS509_3	Propose the deregulated power system and different electricity markets. (3 rd cognitive level)	
0EEPS509_4		
0EEPS509_5	Apply unit commitment methods to operate power system economically.(3 rd cognitive level)	
0EEPS509_6	Apply various methods congestion management & ancillary service to operate power system in deregulated environment.(3 rd cognitive level)	

Course	Contents:	
Unit 1	Economic operation of power system: Introduction, Generator operating cost, performance curves, economic dispatch neglecting loss, economic dispatch including generator limits, losses, B matrix loss formula, calculating penalty factors,	07 Hrs.
Unit 2	Optimal power flow: Introduction, solution of optimal power flow, linear sensitivity analysis, and security constrained optimal power flow.	06 Hrs.
Unit 3	Restructured power systems: Deregulation: Concepts and evaluation, need for deregulation, Competition and direct access to market, Independent system	07 Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

	operator(ISO), study of deregulation from UK, Norway, New Zealand, whole sale electricity market	
Unit 4	Short time load & Price forecasting: Load forecasting introduction, time series data, simple forecast using mean, short time load forecasting by ANN, transmission pricing in open access, price forecasting,	07 Hrs.
Unit 5	Unit commitment: Unit commitment, constraints in unit commitment, unit commitment solution methods, and price based unit commitments, security constraint base unit commitment.	06 Hrs.
Unit 6	Congestion management & Ancillary services: Introduction to congestion management, cost allocation methods, LMP, FTR and zonal congestion management, general description of ancillary services, ancillary service management, Electricity Bill 2003 and its impact on ESI in India	07 Hrs.

Text	Text Books:		
Sr. No	Title	Author	Publisher
01	Power system operation & control	K. Uma rao	Wiley India
02	Power generation, operation & control	Allen J Wood, Bruce F. Wollenberg	Wiley India
03	Power system Restructuring & deregulation	LOI LEI LAI	John Wiley & Sons
04	Power system Forecasting, Scheduling and risk management	MahammadShahidepour, HatimYamin, Zuyi Li	IEEE & Wiley
05	Operation of the restructured power system	KankarBattacharya, Math H J Bollen, Jaap E Daalder	Springer Science

Refe	Reference Books:		
Sr. No	Title	Author	Publisher
01	Operation & Control in power system	P S R Murty	BS Publication
02	Electrical Power Generation, Transmission & Distribution	S N Singh	PHI learning PVT LTD
03	Understanding Electrical Utilities & Deregulation	LorrinPhillipson, H Lee Willis	Taylor & Francis

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech. SemII	
Course Code and Course Title	0EEPS510, Electrical Power Quality an Harmonics	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial	03/01	
Credits	04	
Evaluation Scheme: ISE / MSE / ESE	20/30/50	

Cour	Course Objectives:		
01	To get familiar with power quality issues.		
02	To gain knowledge of harmonics and their sources		
03	To suppress harmonics through active and passive filters.		
04	To mitigate voltage sags and interruptions.		
05	To learn harmonic measurement and power quality monitoring techniques.		
06	To learn harmonic limits set by different regional bodies.	i g	

Course Outco Upon successi	omes (COs): Ful completion of this course, the student will be able to:
0EEPS510_1	Describe different power quality related issues, causes and their effects on power system equipment. (Level 2).
0EEPS510_2	Classify the harmonic in three phase and single phase circuit. (Level 4).
0EEPS510_3	Design the filter for suppression of current harmonics. (Level 6).
0EEPS510_4	Distinguish the different methods for mitigation of voltage sags and interruptions. (Level 4).
0EEPS510_5	Evaluate the different power quality monitoring techniques. (Level 5).

Course Contents:		
Unit 1	Introduction to power quality: What is power quality, power quality related issues in distribution system, loads and their characteristics, electromagnetic phenomena, power quality evaluation procedure,	06 Hrs.
Unit 2	Voltage sag, interruptions and mitigation: End user issues, ups system, Ferro-resonant transformers, super conducting storage devices, dynamic voltage restorer and application of DSTATCOM.	08 Hrs.
Unit 3	Wiring and grounding: Reasons for grounding, typical wiring and grounding problem, solution to wiring and grounding problem.	07 Hrs.
Unit 4	Power quality monitoring:	07 Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

8.	Monitoring considerations, power quality measurement equipment, and assessment of power quality, power quality monitoring and standard.	
Unit 5	Sources of harmonics, effect of harmonics, types and characterization, THDs, influence on power factor, interference with communication network, harmonic indices, and synthesis of harmonic waveform originating from non-linear loads with the help of Fourier analysis. Power definitions and components-single phase circuits and three phase circuits.	06 Hrs.
Unit 6	Harmonic suppression filters: Shunt passive filters, design considerations case studies, voltage/ current source active filters- types: shunt, series and hybrid types, comparison.	08 Hrs.

Text Books:				
Sr. No	Title	Author	Publisher	
01	Electrical Power System Quality	Roger C. Dugan, Mark F. McGranaghan, Surya Snatoso, H. Wayne Beaty	Tata McGraw -Hill	
02	Electrical Power System Quality	J. Arnillaga , D A Bradey& P S Bodger	John Wiley Sons	
03	Power System Harmonics	George J. Wakileh	Springer	

Reference Books:				
Sr. No	Title	Author	Publisher	
01	Uninterrupted Power Supplies and Active filters	Ali Emadi, AbdolhorienNasiri & Stoyon B Bekiarov	CRC Press	

HOD Electrical

Course Details:

Class	M Tech, Sem. II
Course Code and Course Title	0EEPS511, Supervisory Control and Data Acquisition & Automation
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/01
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:
01	To impart knowledge on Process automation
02	To create expertise in the field of process automation using PLC, DCS and SCADA. Program Outcomes
03	To understand the generic architecture and constituent components of a Programmable Logic Controller.
04	To develop architecture of SCADA explaining each unit in detail.
05	To develop a software program using modern engineering tools and technique for SCADA.
06	To apply knowledge gained about PLCs and SCADA systems to identify few real-life industrial applications.

		mes (COs): ul completion of this course, the student will be able to:	
0EEPS		Select the appropriate controller for a particular application(Cognitive 6)	Level
0EEPS	511_2	Develop and explain the working of PLC with the help of a block dia (Cognitive Level 2)	gram.
0EEPS	511_3	Designing various controllers used in the industries. (Cognitive Level	6)
0EEPS	511_4	Develop architecture of SCADA and explain the importance of SCAI critical infrastructure. (Cognitive Level 4)	
0EEPS	511_5	Execute, debug and test the programs developed for digital and operations. (Cognitive Level 5)	d analog
0EEPS	511_6	Reproduce block diagram representation on industrial applications us and SCADA. (Cognitive Level 6)	sing PLC
Course	Conte	nts:	
Unit 1	applic catego contin Auton quality	nation Fundamentals Automation and its importance, automation ations, expectations of automation. Types of plant and control—pries in industry, open loop and close loop control functions, uous processes, discrete processes, and mixed processes nation hierarchy—large control system hierarchy, data quantity & and hierarchical control. Control system architecture—evolution arrent trends, comparison of different architectures.	05 Hrs.
Unit 2		ammable Logic Controller Hardware Evolution of PLC,	08 Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

	The factor (Electrical Tower Sy	Stelli
	Definition, functions of PLC, Advantages, Architecture, working of PLC,	
	Scan time, Types & Specifications. DI-DO-AI-AO examples and ratings,	
	I/O modules, local and remote I/O expansion, special purpose modules,	
	wiring diagrams of different I/O modules, communication modules,	
	Memory & addressing memory organization (system memory and	
	application memory), I/O addressing, hardware to software interface.	
	Software- Development of Relay Logic Ladder Diagram, introduction to	
	PLC Programming, programming devices, IEC standard PLC	
	programming languages, LD programming- basic LD instructions, PLC	
	Timers and Counters: Types and examples, data transfer & program	
TT 1.0	control instructions, advanced PLC instructions, PID Control using PLC	
Unit 3	Applications of PLC	07 Hrs.
	PLC interface to various circuits: Encoders, transducer and advanced	
2	sensors (Thermal, Optical, Magnetic, Electromechanical, Flow, Level	æ,
	sensors) Measurement of temperature, flow, pressure, force, displacement,	
	speed, level Developing a ladder logic for Sequencing of motors, Tank	3
	level control, ON OFF temperature control, elevator, bottle filling plant, car parking	
	1 0	
	Motors Controls: AC Motor starter, AC motor overload protection, DC	
Unit 4	motor controller, Variable speed (Variable Frequency) AC motor Drive. Distributed Control System	OOTT
Chica	Introduction to DCS – Evolution of DCS, DCS flow sheet symbols,	09Hrs.
	architecture of DCS – controller, Input and output modules,	
	communication module, data highway, local I/O bus, workstations,	
	specifications of DCS. Introduction to Hierarchical Control and memory:	it .
	Task listing, Higher & Lower Computer level tasks. Supervisory computer	
	tasks and DCS configuration -Supervisory Computer functions, Control	
iii	techniques, Supervisory Control Algorithm, DCS & Supervisory	
	Computer displays, advanced control Strategies, Computer interface with	
	DCS. DCS - system integration with PLCs and computer: Man machine	
	interface- sequencing, supervisory control, and integration with PLC,	
	personal computers and direct I/O, serial linkages, network linkages, links	
TT '4 F	between networks.	
Unit 5	SCADA System	09 Hrs.
	Introduction, definitions and history of Supervisory Control and Data	
	Acquisition, typical SCADA system Architecture, Communication	
	requirements, Desirable Properties of SCADA system, features, advantages, disadvantages and applications of SCADA SCADA	8
	advantages, disadvantages and applications of SCADA SCADA Architectures (First generation - Monolithic, Second generation -	
	Distributed, Third generation – Networked Architecture), SCADA systems	
	in operation and control of interconnected power system, Power System	Ī
	Automation (Automatic substation control and power distribution),	
	Petroleum Refining Process, Water Purification System, Chemical Plant.	
	Brown Street, was a minimum of storm, Chemical Halit.	

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

Unit 6	SCADA Protocols	04 Hrs.
	Open systems interconnection (OSI) Model, TCP/IP protocol, DNP3 protocol, IEC61850 layered architecture, Control and Information Protocol (CIP), Device Net, Control Net, Ether Net/IP, Flexible Function Block process (FFB), Process Field bus (Profibus). Interfacing of SCADA with PLC.	

Γext H	Books:		
Sr. No	Title	Author	Publisher
01	Introduction to Programmable Logic Controllers	Gary Dunning	Thomson
02	Programmable Logic Controllers Programming Methods and Applications	John R. Hackworth	PHI Publishers
03	Programmable Logic Controllers: Principles and Application", PHI Learning, New Delhi	. John W. Webb, Ronald A. Reis	
04	Securing SCADA System	Ronald L. Krutz	Wiley Publications
05	SCADA supervisory control and data acquisition	Stuart A Boyer	ISA
06	Switchgear and Protections	Sunil S. Rao	
07	Programmable Controllers Theory and Implementation	L.A. Bryan, E. A. Bryan	Industrial Text Company Publication

Refe	rence Books:		
Sr. No	Title	Author	Publisher
01	Programmable Controllers	Batten G. L	McGraw Hill Inc
02	Real Time Computer Control	Bennett Stuart	Prentice Hall
03	Measurement Systems	Doebelin E. O.	McGraw-Hill International Editions
04	Practical Modern SCADA Protocols	Gordan Clark, Deem Reynders	ELSEVIER
05	Computer Based Industrial Control	Krishna Kant	PHI
06	Computer Control of Process	M. Chidambaram	Narosha Publishing
07	Programmable Logic Controllers with Applications	P. K. Srivstava	BPB Publications
08	Distributed Computer Control for Industrial Automation	Poppovik, Bhatkar	Dekkar Publications
09	Computer Aided Process Control	S. K. Singh,	PHI

HOD Electrical

Course Details:

Class	M. Tech, Sem. – II
Course Code and Course Title	0EEPS512, Real Time Control of Power Systems
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	3/1
Credits	4
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:	
01	To introduce real time systems to monitor power system.	
02	To propose generation control to maintain frequency.	
03	To propose optimal control method to select hydro & thermal plant.	
04	To apply reactive control methods to maintain voltage.	
05	To propose state estimation application to power system.	
06	To introduce SCADA.	

Course Outco Upon successf	mes (COs): ul completion of this course, the student will be able to:
0EEPS512_1	Apply analytical methods to process data and monitor system. (3 rd cognitive level)
0EEPS512_2	Design and apply automatic generation control to maintain frequency. (5 th cognitive level)
0EEPS512_3	Schedule hydro thermal generation optimally using different control methods. (3 rd cognitive level)
0EEPS512_4	Design various reactive control methods to maintain voltage within limits. (5 th cognitive level)
0EEPS512_5	Apply state estimation techniques to power system.(3 rd cognitive level)
0EEPS512_6	Describe SCADA for power system application.(3 rd cognitive level)

Course	Contents:	
Unit 1	Analytical Methods: Modeling and identification of power system components, real time data processing, real time monitoring using phasor measurement	06 Hrs.
Unit 2	Automatic generation (Load frequency) control: Objectives, tie line bias control, flat frequency control, supplementary control, interconnected areas, two area, three area systems, state variable model for single, two and three area cross coupling between control loops, AVG, AVR, Application of modern control theory, application of artificial intelligence, AGC using Kalman methods.	07 Hrs.
Unit 3	Optimal control of Hydro – thermalGeneration: Generation mix, optimum economic dispatch, optimum generation allocation solution techniques for optimum power flow such as gradient.	07 Hrs.

HOD Electrical

Dean de agentic

Principal

	Wi. Tech. (Electrical Power Sy	stem)
	Newton's linear programming, nonlinear programming methods such as Dommeltinney, EL Abiad- James. Dynamic programming methods fuel scheduling using linear programming. Hydro thermal scheduling short range and long range dynamic programming, scheduling problems Kirchmayers method of coordinate equation.	
Unit 4	Reactive power control: Need for adjustable reactive power, excitation control, tap changing transformers, fundamental concept of series and dynamic shunt compensation, principles of static compensator and applications automatic power factor controlling schemes.	
Unit 5	State estimation: Power system state estimation least square estimation of A.C networks, estimation by orthogonal decomposition, and application of state estimation to power systems.	06 Hrs.
Unit 6	SCADA and DAS: Power system security, contingency analysis energy control, centralized and decentralized control, SCADA systems, and recent trends on real time operations. Substation automation, remote metering, energy audit reconfiguration of distribution networks under normal conditions for loss minimization and restoration of distribution systems.	07Hrs.

Cext Books:			
Sr. No	Title	Author	Publisher
01	Real time control of electric power system	E. Handschiw	IEEE Press
02	Recent trends in electric energy system	J.Nanda and D.P.Kothari	S Chand
03	Computer aided system analysis and control	Mahalanable Kothari	S Chand
04	Power operation and control	P.S.R.Murthy	BS Publication
05	Electric energy systems theory an introduction	Olle .l.Elgerd	Tata Hill
06	Power generation operation and control	Wood, Wollenberg	Wiley India

Refe	Reference Books:			
Sr. No	Title	Author	Publisher	
01	Reactive power control of electric power system	J.E.Miller		
02	Electric power distribution	A.S.Pable	Tata Hill	
03	Automatic electric utility	G.A.Gnadt and		

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

Reference Books:			
Sr. No	Title	Author	Publisher
	distribution systems	J.S.Lawler	
04	Power system operation & control	K. Uma rao	Wiley India

Course Details:

Class	M. Tech. (Electrical Power System) SemII
Course Code and Course Title	0EEPS513, Flexible AC Transmission and High Voltage DC System
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	03/01
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:
01	To introduce what is reactive power and what are the FACTS devices.
02	To Describe and compare Shunt and Series FACTS Devices
03	To evaluate the performance of various control schemes of combined shunt and series compensators.
04	To Understand the concepts of High Voltage Direct Current Systems
05	To analyze voltage & current characteristics for different converters and correlate with actual HVDC systems.
06	Calculate Reactive Power Requirement of HVDC Converter

Course Outc	omes (COs):		
Upon success:	ful completion of this course, the student will be able to:		
0EEPS513_1	PS513_1 Compare all FACTS devices (Level 4)		
0EEPS513_2	A - 1 - 4 - 1 - 1 - 2		
0EEPS513_3	Analyze the performance of various control schemes of combined shunt and series compensators. (Level 4)		
0EEPS513_4	Evaluate performance of TCVR, TCPAR(Level 5)		
0EEPS513_5	Analyze the working principles and constructions of HVDC Converters, Filters, Protection etc. (Level 4)		
0EEPS513_6	Analyze voltage & current characteristics for different converters and correlate with actual HVDC systems. (Level 4)		

Course	e Contents:	
Unit 1	FACTS Concept and General, System Considerations: Transmission Interconnections, What Limits the Loading Capability, Power flow in AC Systems, Basic Types of FACTS Controllers, Power Flow and Dynamic Stability Considerations of a Transmission Interconnection, Benefits from FACTS Technology, Compare HVDC and FACTS	
Unit 2	Static Shunt and Series Compensators: Objectives of Shunt Compensation, Operation & Control Scheme of TSC,	09 Hrs.

HOD Electrical

Dean Academic

Principa

M. Tech. (Electrical Power System)

	Compensation, GCSC, TSSC, TCSC, Static Synchronous Series Compensator (SSSC)	
Unit 3	Combined Compensator: TBSC, TBSR, TBSC-TBSR, UPFC and IPFC. Their advantages and disadvantages.	06 Hrs.
Unit 4	General Background of HVDC and MTDC System: General aspects HVDC Transmission, Constitution of EHVAC and DC links, Kinds of DC links, HVDC projects in India and abroad, limitations and advantages of HVDC transmission over EHVAC, Layout of HVDC station. Types of MTDC Systems, Reversal of Power in MTDC System, Comparison between MTDC and AC Interconnections.	07 Hrs.
Unit 5	Grid Control and Characteristics: Grid control of thyristor, valve-Analysis with grid control with no overlap, overlap less than 60 degrees and overlap greater than 60 degrees. Basic means of control, Power reversal, manual control and its limitations-constant current versus constant voltage Control, desired features of control, actual control characteristics-constant minimum ignition angle, current and extinction angle controls—power control and current limits.	06 Hrs.
Unit 6	Protection: Disoperation of converters-short circuit on a rectifier commutation failure, causes and remedies, Protection of HVDC system, d.c. rectors, Over current protection and over-voltage protection, fault clearing and reenergizing the line.	08 Hrs.

Text Books:				
Sr. No	Title	Author	Publisher	
01	Understanding FACTS	Narain G. Hingorani	IEEE Press	
02	EHVAC and HVDC Transmission Engineering and Practice	S. Rao	Khanna publication	
03	HVDC power transmission systems	K R Padiyar	New Age International (p)Ltd	

Sr. No	rence Books:	Author	Publisher	
110	5			
01	Direct Current Transmission	Edward Wilson Kimbark	Wiley publication Inter science	

HOD Electrical

Dean Academic

Principal

Research Papers:

- Maffrand, J. W. Dixon, and L. Morán, "Binary controlled, static VAR compensator, based on electronically switched capacitors," in Proc. IEEE PESC'98, pp.1392– 1396, 1998.
- J. W. Dixon, Y. Del Valle, M. orchard, M. Ortizar, L. Moran and C. Maffrand, "A full compensating system for general loads based on a combination of thyristor binary compensator and a PWM-IGBT active power filter", IEEE Trans. Ind. Electron., Vol. 50, No. 5, pp982-989, Oct. 2003.
- Swapnil D. Patil, Anwar M. Mulla, U. Gudaru, D. R. Patil, Member IAENG. "An Innovative Transient Free TBSC Compensator with Closed Loop Control for Fast Varying Dynamic Load", Proceedings of WCECS 2014, Vol I 23-25 October, 2014, San Francisco, USA.
- S. R. Lokhande, Swapnil D. Patil, Anwar M. Mulla and D. R. Patil, "Introduction to FC-TBSR Based SVC for Voltage Regulation and Reactive Power Compensation", IJEEE Volume 8 Issue 01 Jan.-June 2016, pp. 963-968.

HOD Electrical

Dean Academic

rincipal

Course Details:

Class	M. Tech. (Electrical Power System) SemII
Course Code and Course Title	0EEPS514,Optimization Techniques
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial	03/01
Credits	04
Evaluation Scheme: ISE / MSE / ESE	20/30/50

Cour	se Objectives:	
01	Student must be Understand the Introduction optimization theory	
02	Student must be Apply Linear Programming problem theory	
03	Student must be Apply theory to nonlinear programming	,
04	Student must be Constrained optimization	
05	Student must be Create System Modeling	
06	Student must be Apply Conventional tools for linear system modeling	

Course Outco	
Upon successi	ful completion of this course, the student will be able to:
	Understand the Introduction optimization theory. (Level 2)
	Apply Linear Programming problem theory. (Level 3)
0EEPS514_3	Apply theory to nonlinear programming. (Level 3)
	Evaluate the Constrained optimization. (Level 5)
	Design System Modeling. (Level 6)
	Apply Conventional tools for linear system modeling. (Level 3)

Course Contents:		
Unit 1	Optimization Theory: Introduction to optimization theory, Importance in solving system engineering problems, Convex sets & Functions; affine and convex sets, supporting and separating hyper planes, dual cones and generalized inequalities.	06 Hrs.
Unit 2	Linear Programming problem: Formulation, Simplex Method, Dual Simplex method, sensitivity analysis, duality in programming, transportation and assignment problems, traveling salesman problem.	07 Hrs.
Unit 3	Introduction to nonlinear programming; Unconstrained Optimization-formulation of quadratic optimization problems, Kuhn–Tucker conditions, gradient descent and steepest descent methods, Newton's method, self-concordance.	08 Hrs.
Unit 4	Constrained optimization: Direct optimization, Cutting plane methods, methods of feasible direction, analytic center cutting plane methods.	08 Hrs.

HOD Electrical

Dear Academic

Principal

	Multi-objective optimization, Application to approximation and filling problems, Dynamic Programming.	
Unit 5	System Modeling: Introduction, types of modeling, modeling of time-varying, distributed, stochastic, nonlinear, discrete event and hybrid systems.	06 Hrs.
Unit 6	Conventional tools for linear system modeling: Introduction to non-conventional modeling tools, Neural models, fuzzy models, Model simulation languages and tools.	07 Hrs.

Text 1	Text Books:		
Sr. No	Title	Author	Publisher
1	Optimization theory and applications	S S Rao	Wiley Eastern Ltd.
2	Optimization methods	K V Mittal	Wiley Eastern Ltd.
3	Interactive Dynamic System Simulation	Korn G.A	McGraw Hill, N.Y.
4	Introduction to Optimization	J.C. Pant	Jain Brothers

Refer	Reference Books:		
Sr. No	Title	Author	Publisher
1	System modeling and computer simulation	NA Kheir	Marcel Decker, New York

HOD Electrical

Dean Academic

Principal

Course Details:

M: Tech, SemII
0EEPS515, Power Systems transient Analysis
3/1
04
20/30/50

Cour	se Objectives:
01	To study the generation of switching transients and their control using circuit – theoretical concept.
02	To study the mechanism of lighting strokes and the production of lighting surges.
03	To study the propagation, reflection and refraction of travelling waves.
04	To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.
05	To understand the transient causes and effect of transients on power systems

Course Outco	omes (COs):
Upon successi	ful completion of this course, the student will be able to:
0EEPS515_1	Explain the propagation, reflection and refraction of travelling waves. (Level 2)
0EEPS515_2	Describe the causes of transients. (Level 2)
0EEPS515_3	Analyze the impact of voltage transients caused by faults, circuit breaker action, and load rejection on integrated power system. (Level 4)
0EEPS515 4	Analyze the switching and lightning transients. (Level 4)
0EEPS515 5	Evaluate the transient response of systems. (Level 5)
0EEPS515_6	Compare mechanism of lightning discharges and characteristics of lightning strokes. (Level 4)

Course Contents:		
Unit 1	Introduction And Survey: Source of transients, various types of power systems transients, effect of transients on power systems, importance of study of transients in planning.	05 Hrs.
Unit 2	Transient and Types: RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems - role of the study of transients in system planning.	07 Hrs.
Unit 3	Switching Transients: Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and	09 Hrs.

HOD Electrical

an academic

Principal

M. Tech. (Electrical Power System)

	equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple re-striking transients - Ferro resonance.	ar ar
Unit 4	Lightning Transients:	07 Hrs.
*:	Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design – protection using ground wires - tower footing resistance - Interaction between lightning and power system.	8 =
Unit 5	Traveling Waves On Transmission Line Computation Of Transients: Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.	0,7 Hrs.
Unit 6	Transients In Integrated Power System: The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines - over voltage induced by faults - switching surges on integrated system. Qualitative application of EMTP for transient computation.	07 Hrs.

Sr. No	Title	Author	Publisher
01	'Electrical Transients in Power Systems'	Allan Greenwood	Wiley Interscience New York
02	'Extra High Voltage AC Transmission Engineering'	R.D.Begamudre	Wiley Eastern Limited
03	'High Voltage Engineering'	M.S.Naidu and V.Kamaraju	Tata McGraw Hill

HOD Electrical

Course Details

Class	M. Tech, SemII	
Course Code and Course Title	0EEPS516,Research Methodology	
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial	2/0	
Credits		
Evaluation Scheme:	GRADE	

Cour	rse Objectives: The course aims to
1	Provide depth knowledge of research methods and ethics, from design to data analysis and report writing.

Course Outco Upon success	ful completion of this course, the student will be able to:	
0EEPS516_1	Define research, explain and apply research terms, describe the research	
0EEPS516_2	Explain the relationship between theory and research. (2 nd cognitive level)	
0EEPS516_3	Describe and compare the major quantitative and qualitative research method. (2 nd cognitive level)	
0EEPS516_4	Propose a research study and justify the theory as well as methodological decisions including sampling and measurement. (5 th cognitive level)	
0EEPS516_5	Summerize the importance of recent office of its and its	
0EEPS516_6	Construct an effective research proposal that will serve as the launching point for the further study. (6 th cognitive level)	

Course	Contents	
Unit 1	Research methodology an Introduction: Meaning ,objectives and motivation of research , Types of research , research approaches , significance of research , research methods vs. methodology , research and scientific methods ,Importance of knowing how research is done , Research process , Criteria of good research , Problem encountered by researchers in India	04 Hrs.
Unit 2	Defining the research problem and research design Selecting the problem, Techniques involved in defining the problem, meaning and need of research design, features of good design, important concepts relating to research design, different research designs, Basic concepts of experimental designs	03 Hrs.
Unit 3	Sampling design: Census and sample survey, Implications of sample design, Steps in sampling design, Criteria of selecting sampling procedure, Characteristics of good sample design, Different types of sample designs, Random sample	03Hrs.

HOD Electrical

Dean Academic

Principal

M. Tech. (Electrical Power System)

	from an infinite universe, Complex random sampling designs	
Unit 4	Measurement and scaling techniques: Measurement in research, measurement scales, Sources of error in measurement, Tests of sound measurement, Technique of developing measurement Tools, scaling, meaning of scaling, sale classification bases, Important scaling Techniques, scale construction Techniques	02 Hrs
Unit 5	Sampling fundamentals: Need of sampling, Important sampling distribution, central limit theorem, sampling theory, Sandler's A-Test, Concept of standard error, Estimation, Estimating the population mean, Estimating Population Proportion, Sample Size and its Determination, Determination of Sample Size through the Approach Based on Precision Rate and Confidence Level, Determination of Sample Size through the Approach Based on Bayesian Statistics	03 Hrs.
Unit 6	Testing of Hypothesis-I and II: Basic concept of Testing of Hypotheses, Procedure for hypothesis testing, measuring the power of hypothesis test, Flow diagram of hypothesis testing, Important parametric tests, Hypothesis testing of means, Testing the Equality of Variances of Two Normal Populations, Hypothesis Testing of Correlation Coefficients, Limitations of the Tests of Hypotheses, Hypothesis—II, Important Nonparametric or Distribution-free Test, Relationship between Spearman's r's and Kendall's, Characteristics of Distribution-free or Non-parametric Tests	05 Hrs.
Unit 7	Interpretation and report writing: Meaning of interpretation, Why Interpretation?, Techniques of interpretation, Precaution in interpretation, Significance of report writing, Different steps in writing report, Layout of research report, Types of reports, Oral presentation, Mechanism of writing research report, Precaution for writing research reports	02 Hrs.
Unit 8	Introduction to LaTex: Understanding Latex compilation, Basic Syntax, Writing equations, Page Layout.	02 Hrs.

Text Books			
Sr. No.	Title	Author	Publisher
1	Research Methodology: Methods and Techniques	C. R. Kothari	New Age International
2	Research Methodology concepts and cases	Deepak Chawla Neena Sondhi	Vikas

Reference Books			
Sr. No	Title	Author	Publisher
1	Research Methodology	Panneerselvam R	PHI

Course Details:

Class	M. Tech, SemII
Course Code and Course Title	0EEPS553, Power System Lab-II
Prerequisite/s	
Teaching Scheme: Lecture/Tutorial/Practical	0/0/2
Credits	01
Evaluation Scheme: ISE / ESE	50/50

	e Educational Objectives(CEOs): ourse aims to:	e ^{ts}
01	To demonstrate and design modeling of converters	
02	To study and analyze HVDC converter Characteristic	
03	To analyze the Modeling & Simulation of Three Phase Harmonic Filters	
04	To Design simulation models for circuit breakers, surge arrestors, Filter	

Course Outco	omes (COs):	
Upon successi	ful completion of this course, the student will be able to:	
0EEPS553_1	Design Simulation Model of converter using MATLAB (Level 6)	
0EEPS553_2	Design simulation model of HVDC system using MATLAB (Level 6)	
0EEPS553_3	Analyze the Harmonic and transient performance of HVDC transmission system (Level 4)	
0EEPS553_4	Analyze and Design the simulation model of Circuit Breaker and surge arresters for HVDC System (Level 4 & 6)	
0EEPS553_5	Design and analyze simulation model of free switching Binary Current generation of TBSC & TBSR(Level 6)	

List of Experiments:

Sr. No	Title of Experiments
1.	To analyze ideal switch of inductor current chopping
2.	Design transient free switching of capacitor
3.	Design transient free switching of inductor
4.	Design and Analyze Binary Current Generation of TBSC & TBSR
5.	Modeling & Simulation of Two Identical Single-Phase Rectifiers.
6.	Modeling & Simulation of Three-phase diode rectifier.
7.	Design Simulation model of 3 phase SPWM and ISPWM Inverter.
8.	Design Simulation of 6 and 12 pulse 3 phase HVDC system.
9.	Steady-state and transient performance of a 12-pulse, 1000 MW (500 kV-2kA) 50/60 Hz HVDC transmission system.
10.	Study and Simulation of Circuit Breaker and surge arresters.
11.	Analyze VSC-Based HVDC Transmission Link.
12.	Modeling & Simulation of Three-Phase Harmonic Filters used on a 12-pulse AC/DC Converter.

HOD Electrical

Dear Cademic

Principal

M. Tech. (Electrical Power System)

13.	Harmonic analysis on sinusoidal waveform and working of sinusoidal PWM inverte	r.
4 40/10		-

14. Study and simulation of 6 pulse HVDC system & observe Vd-Id characteristics.

15. Hardware Design using Ardiuno

HOD Electrical

Dean Academic

Principal

Course Details:

Class	M. Tech, SemII 0EEPS554, High Voltage Engineering	
Course Code and Course Title		
Prerequisite/s		
Teaching Scheme: Lecture/Tutorial/Practical	0/0/2	
Credits	1	
Evaluation Scheme: ISE/ESE	50/00	

	se Educational Objectives(CEOs): ourse aims to:	-
01	Get familiar with measurement of insulation of dielectric materials	
02	Understand construction and working of impulse generator	
03	Understand field mapping using electrolyte tank	
04	Measure capacitance of cables	3

Course Outco Upon successfu	mes (COs): al completion of this course, the student will be able to:
0EEPS554_1	Demonstrate electrical breakdown voltage of transformer oil (Cognitive Level 3)
0EEPS554_2	Illustrate generation and measurement of high voltage and current (Cognitive Level 3)
0EEPS554_3	Analyze insulation strength of any dielectric material, Cables (Cognitive Level 4)
0EEPS554_4	Demonstrate field mapping using Electrolyte Tank (Cognitive Level 3)
0EEPS554_5	Calculate Capacitance of cables (Cognitive Level 3)

List of Experiments:

Minimum 8 Experiments to be performed

Sr. No	Title of Experiments
1	To determine breakdown voltage of transformer oil
2	To study 5 KV AC Insulation Test
3	To study 5 stage 150 KV and 225J impulse generator and to measure wave shape (front time, tail time and peak voltage) of impulse wave
4	Measurement of breakdown voltage (for AC and DC) of air, using sphere gap assembly
5	Field mapping using electrolyte tank
6	Capacitance Measurement of Cables
7	Measurement of Dielectric properties with Schering Bridge
8	Partial Discharge Measurements of Transformer windings and Cables
9	Insulation Testing of Cables, wires
10	Application of High Voltage in Domestic level- Demonstration of working of

HOD Electrical

Principal

	222 Total (Electrical Fower System)
	Mosquito Rackets, Electric gas Lighters, High Voltage Stun gun, microwave ovens. Electronic Pulse igniter, CRT devices.
11	A report on visit to high voltage laboratory

HOD Electrical

Dean Academic

Principal