

## Sant Dnyaneshwar Shikshan Sanstha's

# Annasaheb Dange College of Engineering and Technology, Ashta

(An Empowered Autonomous Institute)



### **Department of Aeronautical Engineering**

## **Innovation in Teaching Learning Process**

# **Problem and Simulation Based Learning**

Name of the Innovation : Problem & Simulation Based Learning

Course Code and Name : Introduction to Finite Element Analysis

Class and Semester : SY & IV

Academic Year and Term : 2023-2024 Term-II

Faculty Name and Designation : Mr. Basithrahman A & Assistant Professor

#### **Introduction:**

The Introduction to Finite Element Analysis (FEA) course is designed to provide students with a fundamental understanding of numerical problem-solving techniques in engineering. To enhance student engagement and improve conceptual learning, Problem-Based Learning (PBL) and Simulation-Based Learning methods were integrated into the course. These approaches allow students to apply theoretical knowledge to real-world problems, improving both analytical and practical skills.

### **Motivation/Purpose of Innovative Technique:**

Traditional lecture-based teaching often leads to passive learning, limiting students' ability to apply concepts in real-world scenarios. The motivation for implementing PBL and Simulation-Based Learning was to:

- Enhance students' problem-solving abilities by engaging them in realistic engineering challenges.
- Improve comprehension of 1D bar, truss, and beam structures through hands-on numerical problem-solving and ANSYS simulations.
- Foster critical thinking and independent learning by encouraging students to analyze, simulate, and interpret results.
- Bridge the gap between theoretical knowledge and industry-relevant applications in aerospace engineering.
- Develop research and technical reporting skills through micro-projects on aircraft body simulations.

Mr. Basithrahman A - Assistant Professor

E-Mail: bar\_aero@adcet.in



#### Sant Dnyaneshwar Shikshan Sanstha's

# Annasaheb Dange College of Engineering and Technology, Ashta

(An Empowered Autonomous Institute)



## **Department of Aeronautical Engineering**

## **Innovation in Teaching Learning Process**

### **Procedure Followed:**

The course was structured to follow a step-by-step implementation of PBL and Simulation-Based Learning as follows:

- 1. Numerical Problem-Solving Approach:
  - Students were assigned problems related to 1D bar, truss, and beam structures.
  - They manually computed stress, strain, and displacement values for different loading conditions.
- 2. Simulation-Based Learning:
  - After solving problems analytically, students simulated the same problems using ANSYS to compare theoretical and computational results.
  - Additional simulations included:
    - Steady-State Thermal Analysis: Conduction, convection, and radiation.
    - Structural Simulations: Beam bending, hollow cantilever bracket with anti-symmetry boundary conditions, shaft in torsion, pin-supported link, slender cantilever beam, and round membrane under pressure.
- 3. Project-Based Learning:
  - Students conducted micro-projects on aircraft body simulations, applying their learned skills to aerospace-related components.
  - The projects required independent research, analysis, simulation, and report submission.
- 4. Evaluation & Assessment:
  - Students were assessed based on:
    - Accuracy of analytical problem-solving.
    - Correctness and efficiency of their ANSYS simulations.
    - Ability to interpret and validate results.
    - Quality of technical reports and presentations.

Mr. Basithrahman A - Assistant Professor

E-Mail: bar\_aero@adcet.in

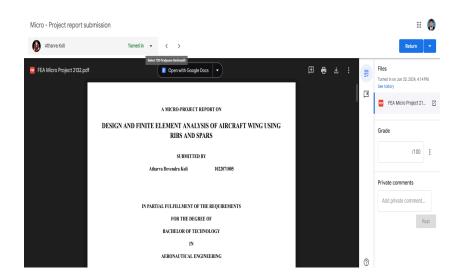


#### Sant Dnyaneshwar Shikshan Sanstha's

# Annasaheb Dange College of Engineering and Technology, Ashta

(An Empowered Autonomous Institute)




### **Department of Aeronautical Engineering**

# **Innovation in Teaching Learning Process**

#### **Outcome:**

The implementation of PBL and Simulation-Based Learning led to several key outcomes:

- Improved Conceptual Understanding: Students developed a stronger grasp of FEA principles through problem-solving and simulations.
- Hands-on Computational Skills: Practical exposure to ANSYS helped students gain proficiency in simulation techniques.
- Bridging Theory with Application: The combination of analytical calculations and simulations reinforced students' ability to analyze real-world engineering problems.
- Enhanced Research & Communication Skills: The micro-projects encouraged students to explore aerospace applications and document findings in technical reports.
- Higher Engagement & Motivation: Active learning methods fostered critical thinking and independent exploration of FEA concepts.



#### **References:**

- 1. Callaghan, M. J., Harkin, J., McGinnity, M., & Maguire, L. (2007). Paradigms in Remote Experimentation. *International Journal of Online and Biomedical Engineering (iJOE)*, 3(4).
- 2. Davidovitch, L., Parush, A. and Shtub, A. (2006), Simulation-based Learning in Engineering Education: Performance and Transfer in Learning Project Management. Journal of Engineering Education, 95: 289-299. https://doi.org/10.1002/j.2168-9830.2006.tb00904.x

Mr. Basithrahman A - Assistant Professor

E-Mail: bar\_aero@adcet.in